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a b s t r a c t

In this paper, we obtain asymptotic approximations to the squared error of the least squares estimator of
the common component in large approximate factormodelswith possiblymisspecified number of factors.
The approximations are derived under both strong andweak factors asymptotics assuming that the cross-
sectional and temporal dimensions of the data are comparable. We develop consistent estimators of
these approximations and propose to use them for model comparison and for selection of the number
of factors. We show that the estimators of the number of factors that minimize these loss estimators are
asymptotically loss efficient in the sense of Shibata (1980), Li (1987), and Shao (1997).
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1. Introduction

Empirical analyses of high-dimensional economic data often
rely on approximate factor models estimated by the principal
components method (see Stock and Watson (2011) for a recent
survey of related literature). Many of these analyses intend to
accurately estimate a low-dimensional common component of
the data. For example, the interest may lie in the part of multi-
national data that can be attributed to a common business cycle,
as in Forni and Reichlin (2001), or in the decomposition of sectoral
output growth rates into the common and idiosyncratic parts, as
in Foerster et al. (2011). Unfortunately, the estimation problem
is complicated by the fact that the number of factors is typically
unknown and is likely to be misspecified. This paper studies
consequences of the misspecification for the squared error of the
estimated common component.

Assuming that the cross-sectional and temporal dimensions
of the data, n and T , are comparable, we derive asymptotic
approximations to the squared error loss through the order n−1

∼

T−1. We consider both strong andweak factors asymptotics. Under
the latter, the asymptotic loss turns out to be minimized not
necessarily at the true number of factors.

We develop estimators of the loss which are consistent under
strong and under weak factors asymptotics, and propose to use
them for model comparison and for selection of the number of
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factors. We show that estimators of the number of factors that
minimize the proposed loss estimates are asymptotically loss
efficient in the sense of Shibata (1980), Li (1987), and Shao (1997).
The majority of recently proposed estimators of the number of
factors, including the popular Bai and Ng (2002) estimators, are
asymptotically loss efficient under the strong factors asymptotics,
but not under the weak factors one.

The basic framework of our analysis is standard. We consider
an approximate factor model

X = ΛF ′
+ e, (1)

where X is an n × T matrix of data, Λ is an n × r matrix of factor
loadings, F is a T × r matrix of factors and e is an n × T matrix of
idiosyncratic terms. Throughout the paper, we will treat Λ and F
as unknown parameters. Equivalently, our results can be thought
of as conditional on the unobserved realizations of random Λ

and F .
Suppose that we estimate the first p of the factors and the

corresponding loadings by the least squares, and let us denote the
estimates as F̂1:p and Λ̂1:p, respectively. As is well known, F̂1:p and
Λ̂1:p can equivalently be obtained by the principal components
(PC) method. That is, the columns of F̂1:p/

√
T are unit-length

eigenvectors of X ′X , and Λ̂1:p = XF̂1:p/T . In the special case where
the idiosyncratic terms are i.i.d. N(0, 1), these are the maximum
likelihood estimates subject to the normalization. Since we do not
know the true value of r , p may be smaller, equal, or larger than r .
We will say that the number of factors is misspecified if p ≠ r.

We are interested in the effect of the misspecification on the
quality of the PC estimate Λ̂1:pF̂ ′

1:p of the common componentΛF ′
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of the data. This quality is measured by the average (over time and
cross-section) squared error

Lp = tr

(Λ̂1:pF̂ ′

1:p −ΛF ′)(Λ̂1:pF̂ ′

1:p −ΛF ′)′

/ (nT ) . (2)

Our interest in Lp is motivated by several reasons. First, accurate
extraction of the common component is important in many
applications. Second, in the special case where the idiosyncratic
terms are i.i.d. N (0, 1), Lp is proportional to the Kullback–Leibler
distance between the true model (1) and the factor model with
factors F̂1:p and loadings Λ̂1:p. Recall that the expected value of such
a distance is usually approximated by Akaike’s (1973) information
criterion (AIC). In Section 3, we show that the AIC approximation
does not hold in the large factor model setting, and propose a valid
alternative.

Finally, loss functions similar to Lp are widely used in the
context of linear regression models. For example, Mallows (1973)
‘‘measure of adequacy for prediction’’ of linear regression model
Y = Z1:pβ1:p + ε when the true model is Y = Zβ + u is given
by (Ẑ1:pβ̂1:p − Zβ)′(Ẑ1:pβ̂1:p − Zβ). The problems of prediction,
model selection, and model averaging with this loss function were
extensively studied by Phillips (1979), Kunitomo and Yamamoto
(1985), Shao (1997), andHansen (2007), to name just a few studies.

Since ΛF ′ is unobserved, Lp cannot be evaluated directly. In
Section 2,we derive asymptotic approximations for Lp that are easy
to analyze and estimate. Section 2.1 considers the standard strong
factors asymptotic regime (Bai and Ng, 2008).

The strong factors asymptotics has been criticized by Boivin and
Ng (2006), Heaton and Solo (2006), DeMol et al. (2008), Onatski
(2010, 2012b), Kapetanios andMarcellino (2010), and Chudik et al.
(2011) for not providing accurate finite sample approximations in
applications where the factors are moderately or weakly influen-
tial. Therefore, in Section 2.2we derive asymptotic approximations
for Lp using Onatski’s (2012b) weak factors assumptions.

Using the derived asymptotic approximations, Section 3 devel-
ops four different estimators of Lp. All these estimators use a pre-
liminary estimator r̂ of the true number of factors r . Under the
strong factors asymptotics, if r̂

p
→ r , all the corresponding loss es-

timators are consistent for Lp after a shift by a constant that does
not depend on p.

Under the weak factors asymptotics, in general, no preliminary
estimator r̂ can consistently estimate r . As explained in Onatski
(2012b, p. 250), one can, instead, estimate the number q of
theoretically detectable, or ‘‘effective’’, factors. If r̂

p
→ q, then

two of the corresponding proposed loss estimators provide the
asymptotic upper and lower bounds on the shifted loss. We show
that the minimizers of these estimators bracket the actual loss
minimizer with probability approaching one as n and T go to
infinity. The other two loss estimators are consistent for the
shifted loss when there is either no cross-sectional or no temporal
correlation in the idiosyncratic terms. In these special cases, the
number of factors that minimizes the corresponding estimator of
the loss is consistent for the number of factors that minimizes the
actual loss. The latter is not necessarily equal to the true number
of factors r or to the ‘‘effective’’ number of factors q.

All the proposed loss estimators are simple functions of
the eigenvalues of the sample covariance matrix. Monte Carlo
exercises in Section 4 show that their quality is excellent when
simulated factors are relatively strong. When the factors become
weaker, the quality gradually deteriorates, but remains reasonably
good in intermediate cases.

In Section 5, we provide an empirical example of model
comparison based on our loss estimators. We compare a two-
and a three-factor model of excess stock returns, and find that
estimating the third factor leads to a loss deterioration for the

monthly data covering the period from 2001 to 2012. That is, a PC
estimate of the three-factor model provides a worse description
of the undiversifiable risk portion of the excess returns than a
PC estimate of the two-factor model. Interestingly, this loss-based
ordering is reversed when we use the data from 1989 to 2000,
which suggests a decrease in the signal-to-noise ratio in the more
recent excess returns data.

Section 6 discusses possible extensions, establishes a con-
nection with the literature on sparse models (see, for exam-
ple, Belloni et al. (2012)), and concludes. All proofs are given in
Appendix A.

2. Asymptotic approximation for the loss

2.1. Strong factors asymptotics

In what follows, µi (M) denotes the ith largest eigenvalue of
a Hermitian matrix M . Further, A·j and Aj· denote the jth column
and jth row of a matrix A, respectively. We make the following
assumptions.

A1 There exists a diagonal matrix Dn with elements d1n ≥ d2n ≥

· · · ≥ drn > 0 along the diagonal, such that F ′F/T = Ir and
Λ′Λ/n = Dn.

This assumption is a convenient normalization. The only non-
trivial constraint it implies is the requirement that rank F = r and
rankΛ = r.

A2 As n → ∞, Λ′Λ/n → D, where D is a diagonal matrix with
decreasing elements d1 > d2 > · · · > dr > 0 along the
diagonal.

Assumption A2 is sometimes called the factor pervasiveness as-
sumption. It requires that the cumulative explanatory power of
factors, measured by the diagonal elements ofΛ′Λ, increases pro-
portionally to n. The assumption is standard, butmay be too strong
in some applications. In Section 2.2, we consider an alternative as-
sumption that allowsΛ′Λ to remain bounded as n → ∞.

Let n, T →c ∞ denote the situation where both n and T diverge
to infinity so that n/T → c ∈ (0,∞). This asymptotic regime
is particularly useful for the analysis of data with comparable
cross-sectional and temporal dimensions, such as many financial
and macroeconomic datasets. It also does not preclude situations
where n/T is small or large as long as n/T does not go to zero or to
infinity.

A3 As n, T →c ∞, (i) there exists ε > 0 such that Pr

tr [ee′

]/(nT )
> ε


→ 1; (ii) for any j, k ≤ r , Λ′

·jeF·k/
√
nT = OP (1); (iii)

µ1

ee′/T


= OP(1).

Part (i) of A3 rules out uninteresting cases where the idiosyncratic
terms eit are zero or very close to zero for most of i and t .
Part (ii) of A3 is in the spirit of assumptions E (d,e) in Bai and
Ng (2008). Validity of the central limit theorem for sequences
ΛijeitFtk; i, t ∈ N


with j, k ≤ r is sufficient but not necessary for

A3(ii). Part (iii) of A3 further bounds the amount of dependence in
the idiosyncratic terms.

Assumption A3(iii) is technically very convenient and has
been previously used by Moon and Weidner (2010a). They
provide several examples of primitive conditions implying A3(iii).
Proposition 6,whichwe formulate and prove in Appendix A, shows
that A3(iii) holds for very wide classes of stationary processes
{e·t , t ∈ Z}.

Proposition 1. Let Pi:j be a T × T matrix of projection on the space
spanned by F·i, . . . , F·j, and let Qi:j be an n × n matrix of projection
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