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a b s t r a c t

The use of many moment conditions improves the asymptotic efficiency of the instrumental variables
estimators. However, in finite samples, the inclusion of an excessive number of moments increases
the bias. To solve this problem, we propose regularized versions of the limited information maximum
likelihood (LIML) based on three different regularizations: Tikhonov, Landweber–Fridman, and principal
components. Our estimators are consistent and asymptotically normal under heteroskedastic error.
Moreover, they reach the semiparametric efficiency bound assuming homoskedastic error. We show
that the regularized LIML estimators possess finite moments when the sample size is large enough. The
higher order expansion of the mean square error (MSE) shows the dominance of regularized LIML over
regularized two-staged least squares estimators. We devise a data driven selection of the regularization
parameter based on the approximate MSE. A Monte Carlo study and two empirical applications illustrate
the relevance of our estimators.
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1. Introduction

The problem of many instruments is a growing part of the
econometric literature. This paper considers the efficient estima-
tion of a finite dimensional parameter in a linear model where the
number of potential instruments is very large or infinite. Many
moment conditions can be obtained from nonlinear transforma-
tions of an exogenous variable or from using interactions between
various exogenous variables. One empirical example of this kind
often cited in econometrics is Angrist and Krueger (1991) who
estimate returns to schooling using many instruments, Dagenais
and Dagenais (1997) also estimate amodel with errors in variables
using instruments obtained from higher-order moments of avail-
able variables. The use of many moment conditions improve the
asymptotic efficiency of the instrumental variables (IV) estimators.
For example, Hansen et al. (2008) have recently found that in an ap-
plication from Angrist and Krueger (1991), using 180 instruments,
rather than 3 shrinks correct confidence intervals substantially to-
ward those of Kleibergen (2002). It has been observed that in finite
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samples, the inclusion of an excessive number of moments may
result in a large bias (Andersen and Sorensen, 1996).

To solve the problem of many instruments efficiently, Carrasco
(2012) proposed an original approach based on regularized two-
stage least-squares (2SLS). However, such a regularized version
is not available for the limited information maximum likelihood
(LIML). Providing such an estimator is desirable, given LIML has
better properties than 2SLS (see e.g. Hahn and Inoue (2002), Hahn
and Hausman (2003), and Hansen et al., 2008). In this paper, we
propose a regularized version of LIML based on three regulariza-
tion techniques borrowed from the statistic literature on linear in-
verse problems (see Kress (1999) and Carrasco et al. (2007)). The
three regularization techniques were also used in Carrasco (2012)
for 2SLS. The first estimator is based on Tikhonov (ridge) regu-
larization. The second estimator is based on an iterative method
called Landweber–Fridman. The third regularization technique,
called spectral cut-off or principal components, is based on the
principal components associated with the largest eigenvalues. In
our paper, the number of instruments is not restricted and may be
smaller or larger than the sample size or even infinite. We also al-
low for a continuum ofmoment restrictions. We restrict our atten-
tion to the case where the parameters are strongly identified and
the estimators converge at the usual

√
n rate. However, a subset of

instruments may be irrelevant.
We show that the regularized LIML estimators are consistent

and asymptotically normal under heteroskedastic error. Moreover,
they reach the semiparametric efficiency bound in presence of
homoskedastic error. We show that the regularized LIML has finite
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first moments provided the sample size is large enough. This result
is in contrast with the fact that standard LIML does not possess any
moments in finite sample.

Following Nagar (1959), we derive the higher-order expansion
of the mean-square error (MSE) of our estimators and show that
the regularized LIML estimators dominate the regularized 2SLS in
terms of the rate of convergence of the MSE. Our three estima-
tors involve a regularization or tuning parameter, which needs to
be selected in practice. The expansion of the MSE provides a tool
for selecting the regularization parameter. Following the same ap-
proach as in Donald and Newey (2001), Okui (2011), and Carrasco
(2012), we propose a data-driven method for selecting the regu-
larization parameter,α, based on a cross-validation approximation
of the MSE. We show that this selection method is optimal in the
sense of Li (1986, 1987), meaning that the choice of α using the
estimated MSE is asymptotically as good as if minimizing the true
unknown MSE.

The simulations show that the regularized LIML is better than
the regularized 2SLS in almost every case. Simulations show that
the LIML estimator based on Tikhonov and Landweber–Fridman
regularizations often have smaller median bias and smaller MSE
than the LIML estimator based on principal components and than
the LIML estimator proposed by Donald and Newey (2001).

There is a growing amount of articles onmany instruments and
LIML. The first papers focused on the case where the number of in-
struments, L, grows with the sample size, n, but remains smaller
than n. In this case, the 2SLS estimator is inconsistent while LIML is
consistent (see Bekker (1994), Chao and Swanson (2005), Hansen
et al. (2008), among others). Hausman et al. (2012) and Chao
et al. (2012) give modified LIML estimators which are robust to
heteroskedasticity in the presence of many weak instruments.
Modifications of GMM have been considered by Canay (2010)
and Kuersteiner (2012) who consider kernel weighted GMM esti-
mators and Okui (2011) who uses shrinkage. Recently, some work
has been done in the case where the number of instruments ex-
ceeds the sample size. Bai and Ng (2010) and Kapetanios and Mar-
cellino (2010) assume that the endogenous regressors depend on a
small number of factors which are exogenous, they use estimated
factors as instruments. Belloni et al. (2012a) assume the approxi-
mate sparsity of the first stage equation and apply an instrument
selection based on Lasso. Recently, Hansen and Kozbur (2014)
propose a ridge regularized jackknife instrumental variable esti-
mator in the presence of heteroskedasticitywhich does not require
sparsity and provide tests with good sizes. The paper which is the
most closely related to ours is that by Donald and Newey (2001)
(DN henceforth) which selects the number of instruments by min-
imizing an approximateMSE.Ourmethod assumesneither a strong
factor structure, nor an exactly sparse first stage equation. How-
ever, it assumes that the instruments are sufficiently correlated
among themselves so that the trace of the instruments covariance
matrix is finite and hence the eigenvalues of the covariance matrix
decrease to zero sufficiently fast.

The paper is organized as follows. Section 2 presents the three
regularized LIML estimators and their asymptotic properties. Sec-
tion 3 derives the higher order expansion of the MSE of the three
estimators. In Section4,wegive a data-driven selection of the regu-
larization parameter. Section 5 presents aMonte Carlo experiment.
Empirical applications are examined in Section 6. Section 7 con-
cludes. The proofs are collected in Appendix.

2. Regularized version of LIML

This section presents the regularized LIML estimators and their
properties. We show that the regularized LIML estimators are con-
sistent and asymptotically normal in presence of heteroskedastic
error and they reach the semiparametric efficiency bound assum-
ing homoskedasticity. Moreover, we establish that, under some
conditions, they have finite moments.

2.1. Presentation of the estimators

The model is
yi = W ′

i δ0 + εi
Wi = f (xi)+ ui

(1)

i = 1, 2, . . . , n. The main focus is the estimation of the p × 1
vector δ0. yi is a scalar and xi is a vector of exogenous variables.Wi
is correlated with εi so that the ordinary least-squares estimator
is not consistent. Some rows of Wi may be exogenous, with the
corresponding rows of ui being zero. A set of instruments, Zi, is
available so that E (Ziεi) = 0. The estimation of δ is based on the
orthogonality condition:

E[(yi − W ′

i δ)Zi] = 0.

Let f (xi) = E (Wi|xi) ≡ fi denote the p×1 reduced form vector.
The notation f (xi) covers various cases. f (xi) may be a linear
combination of a large dimensional (possibly infinite dimensional)
vector xi. Let Zi = xi, then f (xi) = β ′Zi for some L × pβ . Some
of the coefficients βj may be equal to zero, in which case the
corresponding instruments Zj are irrelevant. In that sense, f (xi)
may be sparse as in Belloni et al. (2012b). The instruments have
to be strong as a whole but some of themmay be irrelevant. We do
not consider the case where the instruments are weak (case where
the correlation between Wi and Zi converges to zero at the

√
n

rate) and the parameter δ is not identified as in Staiger and Stock
(1997). We do not allow for many weak instruments (case where
the correlation between Wi and Zi declines to zero at a faster rate
than

√
n and the number of instruments Zi grows with the sample

size) considered by Newey and Windmeijer (2009) among others.
The model allows for xi to be a few variables and Zi to

approximate the reduced form f (xi). For example, Zi could be a
power series or splines (see Donald and Newey, 2001).

As in Carrasco (2012), we use a general notation which allows
us to deal with a finite, countable infinite number of moments,
or a continuum of moments. The estimation is based on a set
of instruments Zi = {Z(τ ; xi) : τ ∈ S} where S is an index set.
Examples of Zi are the following.

- Assume Zi = xi where xi is a L-vector with a fixed L. Then
Z(τ ; xi) denotes the τ th element of xi and S = {1, 2, . . . , L}.

- Z(τ ; xi) = (xi)τ−1 with τ ∈ S = N, thus we have infinite
countable instruments.

- Z(τ ; xi) = exp(iτ ′xi) where τ ∈ S = Rdim(xi), thus we have a
continuum of moments.

It is important to note that throughout the paper, the number
of instruments, L, of Zi is either fixed or infinite and L is always in-
dependent of T. We view L as the number of instruments available
to the econometrician and the econometrician uses all these in-
struments to estimate the parameters. We need to define a space
of reference in which elements such that E (WiZ(τ ; xi)) are sup-
posed to lie. We denote L2(π) the Hilbert space of square inte-
grable functions with respect to π where π is a positive measure
on S. π (τ) attaches a weight to each moments indexed by τ . π
permits to dampen the effect of some instruments. For instance, if
Z(τ ; xi) = exp(iτ ′xi), it makes sense to put more weight on low
frequencies (τ close to 0) and less weight on high frequencies (τ
large). In that case, aπ equal to the standard normal density works
well as shown in Carrasco et al. (2007).

We define the covariance operator K of the instruments as

K : L2(π) → L2(π)

(Kg)(τ1) =


E(Z(τ1; xi)Z(τ2; xi))g(τ2)π(τ2)dτ2

where Z(τ2; xi) denotes the complex conjugate of Z(τ2; xi). K is
assumed to be a nuclear (also called trace-class) operator which
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