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a b s t r a c t

We examine the asymptotic properties of the coefficient of determination, R2, in models with
α-stable random variables. If the regressor and error term share the same index of stability α < 2,
we show that the R2 statistic does not converge to a constant but has a nondegenerate distribution on
the entire [0, 1] interval. We provide closed-form expressions for the cumulative distribution function
and probability density function of this limit random variable, and we show that the density function is
unbounded at 0 and 1. If the indices of stability of the regressor and error term are unequal, we show that
the coefficient of determination converges in probability to either 0 or 1, depending onwhich variable has
the smaller index of stability, irrespective of the value of the slope coefficient. In an empirical application,
we revisit the Fama and MacBeth (1973) two-stage regression and demonstrate that in the infinite-
variance case the R2 statistic of the second-stage regression converges to 0 in probability even if the slope
coefficient is nonzero.We deduce that a small value of the R2 statistic should not, in itself, be used to reject
the usefulness of a regression model.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Granger and Orr (1972) lead off their article ‘‘ ‘Infinite variance’
and research strategy in time series analysis’’ by questioning the
uncritical use of the normal distribution assumption in economic
modeling and estimation:

It is standard procedure in economic modeling and estimation
to assume that random variables are normally distributed. In
empirical work, confidence intervals and significance tests are
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widely used, and these usually hinge on the presumption of a
normal population. Lately, there has been a growing awareness
that some economic data display distributional characteristics
that are flatly inconsistent with the hypothesis of normality.

Due importantly to the seminal work of Mandelbrot (1963),
non-Gaussian α-stable distributions are often considered to pro-
vide the basis for more realistic distributional assumptions for
some economic data, especially for high-frequency financial time
series such as those of exchange rate fluctuations and stock returns.
Financial time series are typically fat-tailed and excessively peaked
around their mean—phenomena that can be better captured by
α-stable distributions with 1 < α < 2 rather than by the normal
distribution for which α = 2. The α-stable distributional assump-
tionwithα < 2 is a generalization of rather than a strict alternative
to the Gaussian distributional assumption. If an economic series
fluctuates according to an α-stable distribution with α < 2, it is
known thatmany of the standardmethods of statistical analysis do
not apply in the conventionalway. In particular, aswedemonstrate
in this paper, if α < 2 the coefficient of determination of a regres-
sion model has several nonstandard properties. Moreover, these
properties are sufficiently important to cast doubt on the suitabil-
ity of the coefficient of determination as a general goodness of fit
criterion in regressions inwhich the regressor(s) and the error term
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are characterized by strong outlier activity, regardless of whether
the sample value of the coefficient of determination is high or low.

The linear regression model is one of the most commonly used
and basic econometric tools, not only for the analysis of macroe-
conomic relationships but also for the study of financial market
data. Typical examples for the latter case are the estimation of the
ex-post version of the capital asset pricing model (CAPM) and the
two-stage modeling approach of Fama and MacBeth (1973). Be-
cause of the prevalence of heavy-tailed distributions in financial
time series, it is of interest to study how regression models per-
form when the data are heavy-tailed rather normally distributed.
There are many heavy-tailed distributions that could be consid-
ered. One such class of distributions that is particularly suitable in
a regression model context is the class of α-stable distributions,
because (i) these distributions are able to capture the relative fre-
quencies of extreme vs. ordinary observations in economic and
financial variables, (ii) they have the convenient statistical prop-
erty of closure under convolution, and (iii) only α-stable distri-
butions can serve as limiting distributions of normalized sums of
independent and identically distributed (iid) random variables, as
proven in Zolotarev (1986). The second and third properties are es-
pecially appealing for regression analysis because the disturbance
term may often be interpreted as a random variable which repre-
sents the sum of all external effects not captured by the regressors.

In this paper,we show that infinite variance of the regressor and
disturbance term has important consequences for the asymptotic
properties of the coefficient of determination, R2, a very frequently
used goodness-of-fit measure. We show that if the regressor and
error term are both α-stable (with α < 2) with the same index of
stability, the R2 statistic does not converge to a fixed (positive) con-
stant but has a nondegenerate limiting distribution on the (0, 1)
interval. Hence, a low value of R2 in an empirical regression ap-
plication should not, by itself, be interpreted as implying either
that the model is poorly specified or that there is no statistically
significant (linear) relationship between the regressor and the de-
pendent variable. In an empirical application, we revisit the Fama
and MacBeth (1973) two-stage regression approach and establish
that infinite variance of the regression variables affects decisively
the interpretation of the well-known stylized empirical fact that
the R2 statistics in static CAPM models tend to be very close to 0.
Specifically, we find that a low value of the R2 statistic should not
be used to conclude that the relationship between the regressor
and the regressand is ‘‘flat’’.

The rest of our paper is structured as follows. In Section 2 we
provide a brief summary of the properties of α-stable distributions
and of aspects of estimation, hypothesis testing, and model
diagnostic checking in regression models with α-stable variables.
Section 3 provides a detailed analysis of the asymptotic properties
of the coefficient of determination in regression models with
infinite variance variables. Our empirical application is presented
in Section 4, and Section 5 offers concluding remarks.

2. Framework

2.1. A brief overview of the properties α-stable distributions

A random variable X is said to have a stable distribution if, for
any positive integer n > 2, there exist coefficients an > 0 and
bn ∈ R such that X1 + · · · + Xn

d
= anX + bn, where X1, . . . , Xn

are independent copies of X and d
= signifies equality in distribu-

tion. The coefficients an are necessarily of the form an = n1/α for
someα ∈ (0, 2]; see Feller (1971, Chapter VI.1). The parameterα is
called the index of stability of the distribution, and a random vari-
able X with index of stability α is called α-stable . An α-stable dis-
tribution is described by four parameters and will be denoted by

S(α, γ , β, δ). Closed-form expressions for the probability density
functions (pdfs) of α-stable distributions are known to exist only
for three special cases.2 However, closed-form expressions for the
characteristic functions of α-stable distributions are readily avail-
able. One parameterization of the logarithm of the characteristic
function of S(α, γ , β, δ) is3

ln E eiτX = iδτ − γ α
|τ |

α

1 + iβ sign (τ ) ω(τ , α)


, (1)

where sign (τ ) equals−1 for τ < 0, 0 for τ = 0, and+1 for τ > 0;
and ω(τ, α) equals − tan(πα/2) for α ≠ 1 and (2/π) ln |τ | for
α = 1.4

The asymptotic tail shape of an α-stable distribution is deter-
mined by its index of stability α ∈ (0, 2]. Skewness is governed
by β ∈ [−1, 1]; the distribution is symmetric about δ ∈ R if and
only if β = 0. The scale and location parameters of α-stable dis-
tributions are denoted by γ > 0 and δ, respectively. If α = 2, the
right-hand side of Eq. (1) reduces to iδτ − γ 2τ 2, which is that of a
Gaussian random variable with mean δ and variance 2γ 2.

For α < 2 and |β| < 1, the tails of an α-stable random vari-
able X satisfy

lim
x→∞

Pr(X > x) = C(α) γ α

(1 + β)/2


x−α (2)

and

lim
x→−∞

Pr(X < x) = C(α) γ α

(1 − β)/2


|x|−α , (3)

i.e., both tails of the pdf of X are asymptotically Paretian, with tail
shape parameter α.5

The function C(α) in Eqs. (2) and (3) is given by6

C(α) =
1 − α

Γ (2 − α) cos(πα/2)
for α ≠ 1 (4)

and by 2/π forα = 1.7 The function C(α) is continuous and strictly
decreasing over the interval (0, 2); furthermore, limα↓0 C(α) = 1
and limα↑2 C(α) = 0. In consequence, as α ↑ 2, proportionately
less and less of the distribution’s probability mass is located in its
tail region. In addition, because the density’s tails decline at an
increasingly rapid rate as α ↑ 2, the likelihood of observing very
large draws conditional on the draw coming from the tail region
decreases as well. These observations explain why potentially very
large sample sizes are required if one desires to estimate the index
of stability with adequate precision if α is close to but smaller
than 2.

Defining E |X |
ξ

= limb→∞

 b
0 xξdF|X |(x), Eqs. (2) and (3) imply

that E |X |
ξ < ∞ for ξ ∈ (0, α) and E |X |

ξ
= ∞ for ξ ≥ α for an

α-stable random variable X with cumulative distribution function
(cdf) FX .8 If α ∈ (1, 2)—as is usually the case for empirical data

2 These three special cases are: the Gaussian distribution, S(2, γ , 0, δ) ≡

N(δ, 2γ 2); the symmetric Cauchy distribution, S(1, γ , 0, δ); and the Lévy
distribution, S(0.5, γ ,±1, δ); see, e.g., Zolotarev (1986, chapter 2) and Rachev et al.
(2005, chapter 7).
3 Other parameterizations exist as well. See Nolan (2013) for a discussion of

several alternative parameterizations.
4 0 · ln 0 is always interpreted as 0.
5 For α < 2 and β = +1 (−1), i.e., for maximally right-skewed (left-skewed)

distributions, only the right (left) tail is asymptotically Paretian. For α < 1 and β =

+1, Pr(X < δ) = 0, i.e., the distribution’s support is bounded below by δ. Zolotarev
(1986, Theorem 2.5.3) and Samorodnitsky and Taqqu (1994, pp. 17–18) provide
expressions for the rate of decline of the non-Paretian tail if β = ±1 and α ≥ 1.
6 See Samorodnitsky and Taqqu (1994, p. 17).
7 The numerator and the second term in the denominator of Eq. (4) both converge

to 0 as α → 1. The result C(1) = 2/π is obtained by applying L’Hôpital’s Rule.
8 Ibragimov and Linnik (1971, Theorem 2.6.4) show that this result holds not

only for α-stable distributions but for all distributions in the domain of attraction
of an α-stable distribution. Ibragimov and Linnik (1971, Theorem 2.6.1) provide
necessary and sufficient conditions for a probability distribution to lie in the domain
of attraction of an α-stable law.
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