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a b s t r a c t

We present a new jackknife estimator for instrumental variable inference with unknown heteroskedas-
ticity. It weighs observations such that many-instruments consistency is guaranteed while the signal
component in the data is maintained. We show that this results in a smaller signal component in the
many instruments asymptotic variance when compared to estimators that neglect a part of the signal to
achieve consistency. Bothmany strong instruments andmanyweak instruments asymptotic distributions
are derived using high-level assumptions that allow for instruments with identifying power that varies
between explanatory variables. Standard errors are formulated compactly. We review briefly known es-
timators and show in particular that our symmetric jackknife estimator performs well when compared
to the HLIM and HFUL estimators of Hausman et al. in Monte Carlo experiments.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The presence of unknown heteroskedasticity is a common
setting in microeconometric research. Inference based on many
instruments asymptotics, as introduced by Kunitomo (1980),
Morimune (1983) and Bekker (1994), shows 2SLS is inconsistent
under homoskedasticity. Bekker and Van der Ploeg (2005) show
in general LIML is many-instruments inconsistent as well under
heteroskedasticity. A number of estimators have been considered,
including the two step feasible GMM estimator of Hansen (1982),
the continuously updated GMM estimator of Hansen et al. (1996),
the grouping estimators of Bekker and Van der Ploeg (2005), the
jackknife estimators of Angrist et al. (1999), the modified LIML es-
timators of Kunitomo (2012) and the HLIM and HFUL estimators of
Hausman et al. (2012). In particular this last paper has been impor-
tant for the approach that we present here.

Our starting point is aimed at formulating a consistent esti-
mator for the noise component in the expectation of the sum of
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squares of disturbances when projected on the space of instru-
ments. That way a method of moments estimator can be formu-
lated similar to the derivation of LIML as a moments estimator as
described in Bekker (1994). Surprisingly the estimator can be de-
scribed as a symmetric jackknife estimator, where ‘omit one’ fitted
values are used not only for the explanatory variables but instead
for all endogenous variables including the dependent variable. In-
fluential papers on jackknife estimation include Phillips and Hale
(1977), Blomquist and Dahlberg (1999), Angrist et al. (1999), Don-
ald and Newey (2000), Ackerberg and Devereux (2003). Our jack-
knife estimator shareswith LIML the property that the endogenous
variables are treated symmetrically in the sense that it is invariant
to the type of normalization, as discussed by Anderson (2005).

Hausman et al. (2012) and Chao et al. (2012, 2014) use a LIML
version of the JIVE2 estimator of Angrist et al. (1999). In case of ho-
moskedasticity and many weak instruments, while assuming the
number of instruments grows slower than the number of observa-
tions, the authors show the HLIM estimator is as efficient as LIML.2
Thus it seems the efficiency problems of jackknife estimators noted
in Davidson and MacKinnon (2006) are overcome. Here we show

2 Also the diagonal elements of the projection matrix of the instruments should
converge to zero uniformly.
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there is room for improvement. The symmetric jackknife estima-
tor has a signal component that is larger than that found for HLIM,
resulting in a smaller component in the asymptotic covariancema-
trix. Monte Carlo experiments show it performs better than HLIM
and its Fuller modifications in terms of the bias–variance trade-off.

The asymptotic theory allows for both many instruments and
manyweak instruments asymptotics. Influential papers in this area
include Donald andNewey (2000), Hahn et al. (2004), Hahn (2002),
Hahn and Inoue (2002), Chamberlain and Imbens (2004), Chao and
Swanson (2005), Stock and Yogo (2005), Han and Phillips (2006),
Andrews and Stock (2007), Van Hasselt (2010). Our results are
formulated concisely. They are based on high level assumptions
where the concentration parameter need not grow at the same rate
as the number of observations and the quality of instruments may
vary over explanatory variables.

The plan of the paper is as follows. In Section 2 we present the
model and some earlier estimators. Section 3 uses a method of
moments reasoning to formulate a heteroskedasticity robust es-
timator that is subsequently interpreted as a symmetric jackknife
estimator. Asymptotic assumptions and results are given in Sec-
tion 4 and proved in the Appendix. Section 5 compares asymptotic
distributions and Section 6 compares exact distributions based on
Monte Carlo simulations. Section 7 concludes.

2. The model and some estimators

Consider observations in the n vector y and the n × g matrix X
that satisfy

y = Xβ + ε, (1)
X = ZΠ + V , (2)

where the g vector β and the k × g matrix Π contain unknown
parameters, and Z is an n × k observed matrix of instruments.
Similar to Hausman et al. (2012) we assume Z to be nonrandom, or
we could allow Z to be random, but condition on it, as in Chao et al.
(2012). The assumption E(X) = ZΠ is made for convenience and
could be generalized as in Hausman et al. (2012), or as in Bekker
(1994). The disturbances in the n×(1+g)matrix (ε,V ) have rows
(εi,Vi), which are assumed to be independent, with zeromean and
covariance matrices

Σi =


σ 2
i σ12i

σ21i Σ22i


.

The covariancematrices of the rows (yi,Xi), i = 1, . . . , n, are given
by

Ωi =


1 β′

0 Ig


Σi


1 0
β Ig


. (3)

Throughout we use the notation where P = Z(Z ′Z)−1Z ′ has
elements Pij = e′

iPej, and ei and ej are conformable unit vectors.
The estimators that we consider are related to LIML which is

found by minimizing the objective function

QLIML(β) =
(y − Xβ)′P(y − Xβ)

(y − Xβ)′(In − P)(y − Xβ)
. (4)

The LIML estimator and Fuller (1977) modifications are given by

β̂ =

X ′PX − λf X ′(In − P)X

−1 
X ′Py − λf X ′(In − P)y


,

λf = λ− α/(n − k),

λ = 1/λmax[{(y,X)′P(y,X)}−1 (y,X)′(In − P)(y,X)],

where λmax indicates the largest eigenvalue. For α = 0 LIML is
found, which has no moments under normality. Under normality
and homoskedasticity, where the matrices Σi do not vary over i =

1, . . . , n, the Fuller estimator that is found for α = 1 has moments
and is nearly unbiased. If one wishes to minimize the mean square

error, α = 4 would be appropriate. However, as shown by Bekker
and Van der Ploeg (2005), LIML is in general inconsistent under
many-instruments asymptotics with heteroskedasticity.3

Similarly, the Hansen (1982) two-step GMMestimator is incon-
sistent under many-instruments asymptotics. It is found by mini-
mizing

QGMM(β) = (y − Xβ)′Z


n
i=1
σ̂ 2
i Z

′

i Zi

−1

Z ′(y − Xβ), (5)

where σ̂ 2
i = (yi − Xiβ̂)

2 and β̂ is a first stage IV estimator such as
2SLS or LIML. A many-instruments consistent version is given by
the continuously updated GMM estimator of Hansen et al. (1996),
which is found by minimizing the objective function (5) where
σ̂ 2
i is replaced by σ̂ 2

i (β) = (yi − Xiβ)
2. Newey and Windmeijer

(2009) showed this estimator and other generalized empirical like-
lihood estimators are asymptotically robust to heteroskedasticity
and many weak instruments. Donald and Newey (2000) gave a
jackknife interpretation. However, the efficiency depends on using
a heteroskedastic consistentweightingmatrix that can degrade the
finite sample performance with many instruments as was shown
by Hausman et al. (2012) in Monte Carlo experiments.

To reduce problems related to the consistent estimation of the
weighting matrix Bekker and Van der Ploeg (2005) use clustering
of observations. If this clustering, or grouping, is formulated as
a function of Z , it is exogenous and continuously updated GMM
estimation can be formulated conditional on it. Bekker and Van der
Ploeg (2005) give standard errors that are consistent for sequences
where the number of groups grows at the same rate as the number
of observations. Contrary to LIML, the asymptotic distribution is
not affected by deviations from normality. It uses the between
group heteroskedasticity to gain efficiency, yet it loses efficiency
due to within group sample variance of the instruments.

Another way to avoid problems of heteroskedasticity is to
use the jackknife approach. The jackknife estimator, suggested by
Phillips and Hale (1977) and later by Angrist et al. (1999) and
Blomquist and Dahlberg (1999) uses the omit-one-observation
approach to reduce the bias of 2SLS in a homoskedastic context.
The JIVE1 estimator of Angrist et al. (1999) is given by

β̂JIVE1 = (X̃ ′X)−1X̃ ′y,

e′

iX̃ = X̃i =
Zi(Z ′Z)−1Z ′X − hiXi

1 − hi
,

(6)

where hi = Pii, and i = 1, . . . , n. It is robust against heteroskedas-
ticity andmany-instruments consistent. The JIVE2 estimator of An-
grist et al. (1999) shares the many-instruments consistency prop-
erty with JIVE1. It uses X̃ = (P − D)X and thus minimizes a 2SLS-
like objective function

QJIVE2(β) = (y − Xβ)′{P − D}(y − Xβ), (7)

where D = Diag(h) is the diagonal matrix formed by the elements
of h = (h1, . . . , hn)

′. JIVE2 is consistent under many instruments
asymptotics as has been shownbyAckerberg andDevereux (2003).
However, Davidson and MacKinnon (2006) have shown that the
jackknife estimators can have low efficiency relative to LIML un-
der homoskedasticity.

Therefore, Hausman et al. (2012) consider jackknife versions
of LIML and the Fuller (1977) estimator by using the objective
function

QHLIM(β) =
(y − Xβ)′{P − D}(y − Xβ)

(y − Xβ)′(y − Xβ)
. (8)

3 When dummy instruments indicate groups and group sizes are equal, LIML is
many-instruments consistent even under heteroskedasticity.
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