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a b s t r a c t

This paper proposes closed-form estimators for nonparametric regressions using twomeasurementswith
non-classical errors. One (administrative) measurement has location-/scale-normalized errors, but the
other (survey) measurement has endogenous errors with arbitrary location and scale. For this setting
of data combination, we derive closed-form identification of nonparametric regressions, and practical
closed-form estimators that perform well with small samples. Applying this method to NHANES III, we
study how obesity explains health care usage. Clinical measurements and self reports of BMI are used as
two measurements with normalized errors and endogenous errors, respectively. We robustly find that
health care usage increases with obesity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For the increasing availability of combined administrative and
survey data (Moffitt and Ridder, 2007), econometric methods that
can properly handle matched data with measurement errors have
become of great practical importance. For econometric methods to
be truly useful no matter how complicated a model is, estimators
should ideally be given in a closed form explicitly written in terms
of observed data, like the OLS. Unfortunately, such convenient
characteristics are rarely shared by nonparametric estimators for
non-classical measurement errors.

Identification and estimation of regression models with two
measurements of explanatory variables are proposed by Li (2002)
and Schennach (2004a,b) among others. A limitation with the ex-
isting methods is that they require twomeasurements with classi-
cal errors. In practice, empirical datawith twomeasurements often
come from matched administrative, imputed, and/or survey data,
where particularly survey data are often subject to non-classical
errors (e.g. Bound et al., 2001; Koijen et al., 2013). Ignoring the non-
classical nature of errors inmeasurementsmay lead to inconsistent
estimation, as we demonstrate in our simulations. In this paper,
we propose closed-form estimators for nonparametric regression
models using two measurements with non-classical errors.
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Specifically, we explicitly estimate the nonparametric regres-
sion function g for the model

Y = g(X∗) + U E

U|X∗


= 0,

where Y is an observed dependent variable, X∗ is an unobserved
explanatory variable, and U is the regression residual. While the
true explanatory variable X∗ is not observed, two measurements,
X1 and X2, are available frommatched data. For simplicity, X∗ is as-
sumed to be a scalar and continuously distributed. The relationship
between the twomeasurements and the true explanatory variable
X∗ is modeled as follows.

X1 =

P
p=0

γpX∗p
+ E1

X2 = X∗
+ E2.

Unless γ1 = 1 and γ2 = · · · = γP = 0 are true, the first measure-
mentX1 entails non-classical errorswith nonlinearity. Allowing for
such non-classical errors is crucial particularly for survey data that
are often contaminated by endogenous self-reporting biases. Since
the truthX∗ is unobserved, the secondmeasurementX2 is location-
/scale-normalizedwith respect to the unobserved truth X∗. We use
alternative independence assumptions on the measurement error
E2 depending on which order P we assume about X1, but these as-
sumptions are more innocuous than assuming classical errors in
any case.
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Under assumptions thatwill be introduced below,we show that
the regression function g can be explicitly expressed as a functional
of the joint CDF FYX1X2 in the sense that g(x∗) = λ(x∗

|FYX1X2). We
provide the concrete expression for this functional λ(x∗

| · ). In
order to construct a sample-counterpart estimator of g(x∗) given
this closed-form identifying solution, it suffices to substitute the
empirical distributionFYX1X2 in this known transformation so we
get the closed-form estimator g(x∗) = λ(x∗

| FYX1X2). We present
its theoretical large sample properties as well as its small sample
performance. Monte Carlo simulations show that the estimator
works quite well with N = 500, a very small sample size for
nonparametrics.

Measurement error models have been extensively studied in
both statistics and econometrics. The statistical literature focuses
on cases of classical errors, where measurement errors are inde-
pendent of the true values — see Fuller (1987) and Carroll et al.
(2006) for reviews. The econometric literature investigates non-
linear models and nonclassical measurement errors — see Chen
et al. (2011), Bound et al. (2001) and Schennach (2013) for reviews.
However, closed-form estimation, nonlinear/nonparametric mod-
els, and non-classical measurement errors still remain unsolved,
despite their joint practical relevance. Two measurements are
known to be useful to correct measurement errors even for ex-
ternal samples if the matched administrative data is known to be
true (e.g., Chen et al., 2005). The baseline model of our framework
was introduced by Li (2002) and Schennach (2004a), where they
consider parametric regression models under two measurements
with classical errors. Hu and Schennach (2008) provide general
identification results for nonseparable and non-classical measure-
ment errors,1 but their estimator relies on semi-/non-parametric
extremal estimatorwhere nuisance functions are approximated by
truncated series.2 Unlike these existing approaches, we develop a
closed-form estimator for nonparametric models involving non-
classical measurement errors.

Our results share much in common with Schennach (2004b)
where she develops a closed-form estimator under the restriction,
γ1 = 1 and γ2 = · · · = γP = 0, of a classical-error structure. There
are notable differences and thus values added by this paper as
well. Our method paves the way for non-classical error structures
with highdegrees of nonlinearitywhereas the existing closed-form
estimator can handle only classical errors. To this end, we propose
a new method to recover and use the characteristic function of
the generated latent variable

P
p=1 γpX∗p, instead of just X∗, in the

framework of deconvolution approaches. Not surprisingly, as we
show through simulations, the classical error assumption γ1 = 1
and γ2 = · · · = γP = 0 can severely bias estimates if the
true DGP does not conform with this assumption. In our empirical
application, we find that γ1 ≠ 1 is indeed true when people report
their physical characteristics, and hence the existing closed-form
estimator that assumes classical errors would likely suffer from
biased estimates. The contribution of our method is to overcome
these practical limitations of the existing closed-form estimators.

For an empirical illustration, we investigate how obesity mea-
sured by the BodyMass Index (BMI) explains the health care usage
by using a sample of about 1900 observations extracted from the
National Health and Nutrition Examination Survey (NHANES III).

1 Also see Mahajan (2006), Lewbel (2007), and Hu (2008) for non-/semi-
parametric identification and estimation under non-classical measurement errors
with discrete variables.
2 Our model is also closely related to nonparametric regression models with

classical measurement errors, which are extensively studied in the rich literature
in statistics. When the error distribution is known, the regression function may be
estimated by deconvolution — see Fan and Truong (1993) and Carroll et al. (2006)
for reviews. When the error distribution is unknown, Schennach (2004b) uses
Kotlarski’s identify (see Rao, 1992) to provide a Nadaraya–Watson-type estimator
for the regression function.

This data set uniquely matches self-reports and clinical measure-
ments of the BMI.We allow the formermeasurement to suffer from
endogenous biases with arbitrary location and scale, while the lat-
ter measurement is location-/scale-normalized with respect to the
true BMI. Our results show a robust upward-sloping tendency of
the mean health care usage as a function of the true BMI, control-
ling for the most important health factors, namely gender and age.
This tendency is particularly stronger for females.

2. Closed-form identification: a baseline model

Our objective is to derive closed-form identifying formulas
for the nonparametric regression function g . For the purpose of
intuitive exposition, we first focus on the following simple model:

Y = g(X∗) + U, E[U | X∗
] = 0

X1 = γ1X∗
+ E1 E[E1] = γ0

X2 = X∗
+ E2, E[E2] = 0

(2.1)

where we observe the joint distribution of (Y , X1, X2). The restric-
tion E[U | X∗

] = 0 means that g(X∗) is the nonparametric re-
gression of Y on X∗. We do not assume E[E1] to be zero in order to
accommodate arbitrary intercept γ0 for the first measurement X1.
As such, we suppress γ0 from the equation for X1, i.e., it is embed-
ded in γ0 = E[E1]. On the other hand, the locational normalization
E[E2] = 0 is imposed on the second measurement X2. A leading
example of (2.1) is the case with γ1 = 1 often assumed in related
papers in the literature. We do not make such an assumption, and
thus our model (2.1) accommodates the possibility that the first
measurement X1 is endogenously biased even if X∗

⊥⊥ E1 is as-
sumed, as E[X1 − X∗

| X∗
] = γ0 + (γ1 − 1)X∗.

We can easily show that γ1 is identified from the observed data
by the closed-form formula

γ1 =
Cov(Y , X1)

Cov(Y , X2)
(2.2)

under the following assumption.

Assumption 1 (Identification of γ1). Cov(E1, Y ) = Cov(E2, Y ) = 0
and Cov(Y , X2) ≠ 0.

The first part of this assumption requires that E1 and E2 are un-
correlated with the dependent variable. These zero covariance re-
strictions can be implied by a lower-level assumption, such as E[U |

X∗, E1, E2] = 0, E1 ⊥⊥ X∗, and E[E2 | X∗
] = 0,which also imply the

additional identifying restrictions presented later (Assumption 3).
The second part of Assumption 1 is empirically testable with ob-
served data, and implies a non-zero denominator in the identifying
Eq. (2.2). We state this auxiliary result below for ease of reference.

Lemma 1 (Identification of γ1). If Assumption 1 holds, then γ1 is
identified with (2.2).

In some applications, we may simply assume γ1 = 1 from the
outset, and Assumption 1 need not be invoked. In any case, we
hereafter assume that γ1 is known either by assumption or by the
identifying formula (2.2), and that γ1 is different from zero.

Assumption 2 (Nonzero γ1). γ1 ≠ 0.

If this assumption fails, then the observed variable X1 fails to
be an informative signal of X∗. Assumption 2 therefore plays the
role of letting X1 be an effective proxy for the latent variable X∗.
To complete our definition of the model (2.1), we impose the
following independence restrictions.

Assumption 3 (Restrictions). (i) E [U|X1] = 0. (ii) E1 ⊥⊥ X∗.
(iii) E [E2|X1] = 0.
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