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This paper develops a maximum likelihood (ML) method to estimate partially observed diffusion models
based on data sampled at discrete times. The method combines two techniques recently proposed in
the literature in two separate steps. In the first step, the closed form approach of Ait-Sahalia (2008) is
used to obtain a highly accurate approximation to the joint transition probability density of the latent
and the observed states. In the second step, the efficient importance sampling technique of Richard and
Zhang (2007) is used to integrate out the latent states, thereby yielding the likelihood function. Using both
simulated and real data, we show that the proposed ML method works better than alternative methods.
The new method does not require the underlying diffusion to have an affine structure and does not involve
infill simulations. Therefore, the method has a wide range of applicability and its computational cost is
moderate.
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1. Introduction

Continuous time diffusion models have long proven useful in
economics and finance. For example, they provide a convenient
mathematical framework for the development of financial eco-
nomics and option pricing theory (Black and Scholes, 1973; Hes-
ton, 1993; Duffie and Kan, 1996). The separate treatment of stock
and flow variables in macroeconomics (Bergstrom, 1984) and the
formulation of continuous time inter-temporal optimization mod-
els (Turnovsky, 2000) represent additional usage of diffusion mod-
els in economics. Not surprisingly, fitting diffusion models based
on data sampled at discrete times has received a great deal of at-
tention in econometrics.

* Kleppe gratefully acknowledges the hospitality during his research visit to
School of Economics and Sim Kee Boon Institute for Financial Economics at
Singapore Management University. Yu thanks the Singapore Ministry of Education
for Academic Research Fund under grant number MOE2011-T2-2-096. We are
grateful to the co-Editor Yacine Ait-Sahalia and two anonymous referees for
constructive comments that have greatly improved the paper. Moreover, we are
indebted to Kenneth Lindsay for advise on implementing the method of Hurn et al.
(2013) and to Roman Liesenfeld and Atle @glend for invaluable comments.

* Correspondence to: School of Economics, 90 Stamford Road, Singapore 178903,
Singapore. Tel.: +65 68280858; fax: +65 68280833.

E-mail address: yujun@smu.edu.sg (J. Yu).

http://dx.doi.org/10.1016/j.jeconom.2014.02.002
0304-4076/© 2014 Elsevier B.V. All rights reserved.

The case when some of the state variables are latent is often
encountered in practical applications. One example of such par-
tially observed diffusion models is the continuous time stochastic
volatility models with the volatility being the latent state; see Hull
and White (1987) and Heston (1993). Another example is the con-
tinuous time stochastic mean model of Balduzzi et al. (1998), in
which the mean is a latent state. Obviously, the combination of a
latent volatility and a latent mean also makes a partially observed
diffusion model. This class of models has found a wide range of ap-
plications in the term structure literature Duffie and Kan (1996),
Dai and Singleton (2000) and in the option pricing literature Duffie
et al. (2000).

It has been argued, on the basis of asymptotic properties, that
the preferred choice of estimation method for diffusion models
should be maximum likelihood (ML) (Ait-Sahalia, 2002; Durham
and Gallant, 2002). The ML estimation of partially observed
diffusions necessitates the computation of the joint transition
probability density (TPD) of the observed and the latent state
variables as well as the marginalization of the latent variable from
the joint density.

When the transition density of the state variables does not have
a closed-form expression, it has to be approximated. Many approx-
imation methods have been proposed in the literature which is re-
viewed in Jensen and Poulsen (2002), Hurn et al. (2007) and Phillips
and Yu (2009). Broadly speaking, the methods can be classified
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into two classes. In the first class, the diffusion model is approx-
imated by a discrete time model whose TPD is available in closed
form. The well-known Euler-Maruyama (EM) approximation and
the approximations of Bergstrom (1966), Nowman (1997), Milstein
(1979) and Shoji and Ozaki (1998) all belong to this class. These
methods in general lead to a bias in the calculation of the likelihood
function that does not vanish asymptotically (see Ait-Sahalia, 2002
and references therein). We shall refer to such a bias as the dis-
cretization bias. In the second class, the TPD of the diffusion model
is approximated directly, including the infill approximations and
the closed-form approximations. To the best of our knowledge, the
first contribution on the topic of infill approximations is in Ped-
ersen (1995).! The closed-form approximation techniques include
the Hermite approximation of Ait-Sahalia (2002), the polynomial
approximation of Ait-Sahalia (2008), and the saddlepoint approx-
imation of Ait-Sahalia and Yu (2006). Both the infill techniques
and the closed-form techniques can reduce the discretization bias.
Compared to the infill techniques, the closed-form techniques are
computationally much cheaper and the approximation errors are
smaller (Ait-Sahalia, 2002).

When the diffusion specifying the observed and latent states
is not a linear Gaussian process, the marginalization of the la-
tent state variable cannot be achieved analytically. Consequently,
various importance sampling techniques have been proposed to
integrate out the latent state variable from the joint density via
simulations. The importance sampler of Shephard and Pitt (1997)
and Durbin and Koopman (1997) (see also Sandmann and Koop-
man, 1998, Durham, 2006, and Skaug and Yu, forthcoming) used
a global, multivariate Gaussian approximation to the joint den-
sity as the importance density, whereas Richard and Zhang (2007)
(see also Liesenfeld and Richard, 2003, 2006) used a product of
univariate Gaussian approximations to the conditional TPD as the
importance density. While both methods work well for estimat-
ing discrete time stochastic volatility models, as shown in Lee and
Koopman (2004), the importance sampler of Richard and Zhang
(2007) tends to be more well-behaved than that of Shephard and
Pitt (1997) and Durbin and Koopman (1997).

For most partially observed diffusion models, almost all of
the afore-mentioned ML methods are not directly applicable. Ar-
guably, the most widely used ML approach to estimating partially
observed diffusion models is to use the EM approximation to dis-
cretize the diffusion models and then use an importance sampler
to marginalize out the unobserved latent state variables. This ap-
proach naturally leads to the discretization bias when a sampling
interval is fixed.

Several approaches have been proposed in the literature to
provide ML estimation of partially observed diffusion models with
the discretization bias being controlled. Bates (2006) proposed
a frequency domain filtering method to compute the likelihood
function of latent affine diffusion models via the conditional
characteristic functions. This technique is not feasible for non-
affine models for which the conditional characteristic functions are
not available in closed form.

Ait-Sahalia and Kimmel (2007) proposed to approximate the
volatility (latent state) using the implied volatility computed from
the underlying options. Consequently, no state variable is latent
in the continuous time stochastic volatility model and the closed
form approximation of Ait-Sahalia (2008) is directly applicable.
However, it is well-known that option prices are derived from
the risk neutral measure (Heston, 1993). As a result, using data
from both the spot market and the options market jointly, one
can simultaneously learn about both the physical measure and the

1 Elerian et al. (2001) and Eraker (2001) use the infill methods to conduct
Bayesian inference of continuous time models.

risk-neutral measure. Naturally, this benefit is achieved at a cost.
To connect the physical measure to the risk-neutral measure, the
functional form of the market price of risk has to be specified.
If one’s interest is to learn about the physical measure only, the
implied volatility is less useful. Moreover, in some cases, such as
for models with a stochastic mean, it is not clear how to extract
latent variables from derivative prices. Perhaps most importantly,
when the latent volatility is approximated by the implied volatility,
approximation errors are introduced. How these errors influence
the estimated price dynamics remains to be answered.

More recently, a quasi-ML (QML) approach was proposed
by Hurn et al. (2013) to estimate partially observed diffusion
models. However, the discretization bias cannot be completely
removed by this method. While the infill technique combined with
the importance sampler via the global approximation has been
introduced to provide the ML estimation (see, for example, Durham
and Gallant, 2002), it is computationally very expensive.

In this paper, we introduce a new ML method to estimate
partially observed diffusion models. Our ML method combines the
closed-form approach of Ait-Sahalia (2008) for approximating the
joint TPD of the observed and the latent state variables and the
efficient importance sampler (EIS) of Richard and Zhang (2007) for
integrating out latent states from the joint density. Our method
inherits two nice features of the closed-form approximation
techniques of Ait-Sahalia (2002) and Ait-Sahalia (2008). First, it
can practically remove the discretization bias and, hence, leads
to more accurate likelihood values than the QML and the EM
methods. Second, it is computationally inexpensive, especially
relative to the infill methods. Moreover, our method is very general
in the sense that only weak assumptions regarding the structure
of the underlying diffusion must be made. Most notably, an affine
structure does not need to be assumed.

The paper is organized as follows. Section 2 proposes the
new estimation method. Section 3 illustrates our method using
the GARCH diffusion model of Nelson (1990) and investigates
the performance of the proposed method relative to alternative
methods, including the EM method and the QML of Hurn et al.
(2013), using simulated data. In Section 4, we fit the GARCH
diffusion to real data. Finally, Section 5 concludes and outlines
some further applications and implications of the approach.

2. Methodology

2.1. Model specifications

Let the time-homogeneous diffusion be denoted by
dX; = a(X; 6)dt + b(X;; 6)dB,, (1)

where X; and a(X;; 0) are g-vectors, and b(X;;6) isa q x g
matrix, with B, being a g-dimensional uncorrelated Brownian
motion. 6 is the vector of parameters to be estimated. We assume
that (1) admits a unique solution and that b(X;; 8)b(X;; 6)’ is
positive definite for all admissible values of X; and 8. Moreover,
we assume that a(-; 8) and b(-; ) are infinitely differentiable. Let
X = Xea (6 = 1, ..., T) be the value of X; sampled at frequency
1/A and X = (x4, . .., xr) be the collection of such values.

Due to the Markovian property of X., the joint probability
density function (PDF) of X may be written as

T
p(x; 0) = p(x1; 0) [ [ pexelxi—1: 0). (2)
=2
Here p; (x¢|x;_1; 6) is the TPD associated with (1) and p(xy; 0) is the,
possibly degenerate, density of the initial state x;. We assume that
the first g, elements of x;, denoted by y, are observed at frequency
1/Aandt = 1,...,T. The remaining g, = q — q, elements of
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