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a b s t r a c t

In this paper we describe methods and evaluate programs for linear regression by maximum likelihood
when the errors have a heavy tailed stable distribution. The asymptotic Fisher information matrix for
both the regression coefficients and the error distribution parameters are derived, giving large sample
confidence intervals for all parameters. Simulated examples are shown where the errors are stably
distributed and also where the errors are heavy tailed but are not stable, as well as a real example using
financial data. The results are then extended to nonlinear models and to non-homogeneous error terms.
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1. Introduction

Ordinary least squares (OLS) is awell established and important
procedure for solving regression problems when the errors are
normally distributed. Although small departures from normality
of the error terms do not affect the regression coefficients
greatly, errors with a heavier tailed distribution can result in
extreme observations and can significantly affect the estimated
OLS regression coefficients. Our focus in this paper is when the
error termshave an infinite varianceα-stable distribution, possibly
with skewness, where OLS can perform very poorly, giving a poor
fit and leading to faulty predictions.

Heavy tailed data has been observed in many applications
in economics, finance, and engineering. Some basic references
are Fama (1963), Mandelbrot (1963), Fama (1965), Nikias and
Shao (1995), Adler et al. (1998), Rachev and Mittnik (2000) and
Rachev (2003). In these applications, outliers are not mistakes, but
an essential part of the error distribution. We are interested in
both estimating the regression coefficients and in fitting the error
distribution.

The standard linear regression model is

yi =

k
j=1

xi,jθj + ϵi i = 1, . . . , n, (1)
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where xi,j are independent variables, yi are the response variables,
θj are the coefficients of the regression, to be estimated, and the
error terms ϵi are i.i.d. random variables. The reasoning used to
justify the normalmodel for the error terms in (1) is that the error is
the sumofmany unmeasured terms. If the unmeasured terms have
a finite variance, then the central limit theorem says that the error
terms will be approximately normal. But when the unmeasured
terms are heavy tailed, the generalized central limit theorem says
that the error terms will be approximately stable.

The main drawback to the use of stable models has been the
lack of closed form expressions for densities for all but a few
special cases. However, with improved algorithms and increasing
computer power, it is now possible to estimate parameters from
these distributions numerically,making thesemodels practical and
easily applicable to data. In particular, Nolan (2001) implements
maximum likelihood (ML) estimation for stable parameters when
there is an i.i.d. sample, and gives references to other estimation
procedures.

For linear regression when the errors are normally distributed,
the OLS solution is the same as the ML solution. When the errors
are not normally distributed, these two methods are not the same.
Robust estimation methods use some technique that removes or
downplays outliers. Here we do not use robust estimation, but
instead use robust modeling, as advocated in Lange et al. (1989).
In contrast to a robust estimation method, robust modeling is
interested in both estimating the regression coefficients, and in
fitting the error distribution. Specifically, we use a heavy tailed
stable model for the errors, and ML to estimate all the parameters
simultaneously.
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There are several papers in the literature on this topic. Blattberg
and Sargent (1971) proposed two methods for estimating a single
regression coefficient in the infinite variance stable case. First,
they developed a best linear unbiased estimator (BLUE), assuming
symmetric errors and that the index of stability α is known. Those
authors credit Wise (1966) with suggesting this approach; we are
unable to comment on Wise’s contribution because we cannot
obtain this source. Second, they applied minimum sum of absolute
error (MSAE), also called least absolute deviation or L1 regression,
where the regression coefficients minimize the sum of absolute
deviations

n
i=1 |yi − (θ1xi,1 +· · ·+ θkxi,k)|. They showed through

simulation, that when 1 < α < 1.7, BLUE and OLS perform
approximately the same, and that MSAE is better than either. In
contrast, when 1.7 ≤ α < 2, OLS outperforms BLUE, which
slightly outperformsMSAE. Heathcote (1982) discussed functional
least squares, using a loss function that depends on the sample
characteristic function of the data. These are all robust estimation
procedures, and they do not yield a parametric fit to the residuals.
El Barmi and Nelson (1997) considered a stable regression model,
but they have restrictive assumptions: they assume α is known, β
is known and zero, and they do not estimate the scale γ . McCulloch
(1998) usedML to estimate the linear regression coefficients when
the errors are symmetric stable.

More recently, Samorodnitsky et al. (2007) reconsidered BLUE
regression in a more general setting, where the independent
variables can also be random, with the independent variables and
the dependent variables having any combination of light or heavy
tailed distributions. Their analysis is informative and interesting:
it shows when the BLUE estimates are consistent and gives
optimal convergence rates for BLUE in terms of the tails of both
the error distribution and the independent variable distribution.
Autoregressive time series models for α-stable models are studied
in Andrews et al. (2009). Hallin et al. (2010, in press) use rank based
methods to fit linear models in the presence of infinite variance
error terms.

The results in the current paper are based on dissertation
work in Ojeda (2001). The ML approach described here extends
previous work in several ways. It allows for non-symmetric
error distributions, allows a larger range for α than McCulloch
(1998), simultaneously estimates multiple regression coefficients
θ1, . . . , θk and the parameters of the stable error distribution,
increases the accuracy and speed of the computations, gives
asymptotic joint confidence regions for all the parameters
with normal distributions for the estimates and n−1/2 rate of
convergence, and extends theML approach to nonlinear regression
with stable error terms.

We close this section with a discussion on parameterizations of
stable distributions. Then in Section 2 a ML estimation procedure
for linear regression with stable errors is given. We also describe
three methods of computing confidence interval estimates for the
coefficients, compute the score function for the location, and assess
the accuracy of the estimationmethods by simulations. In Section 3
we extend these results to nonlinear regression problems, allowing
non-homogeneous errors. The paper ends with a short conclusion
section.

Parameterizations of stable distributions

Stable distributions are a four parameter family, with index
of stability α ∈ (0, 2], skewness β ∈ [−1, 1], scale γ > 0,
and location δ ∈ (−∞,∞). Since there is no known formula
for the density or distribution function of a general stable random
variable, these distributions are specified by their characteristic
function. A random variable X is stable if X d

= aZ + b, where a ≠ 0,

b ∈ R and Z = Z(α, β) is a random variable with characteristic
function

E exp(iuZ)

=



exp

−|u|α


1 + iβ(sign u) tan

πα

2
(|u|−α−1

− 1)


α ≠ 1

exp


−|u|

1 + iβ(sign u)

2
π

log |u|


α = 1.

This is the simplest parameterization of a standardized stable
random variable that is jointly continuous in (α, β); it is the (M)
parameterization on page 11 of Zolotarev (1986), and discussed
on page 7 of Samorodnitsky and Taqqu (1994). It is important
for numerical purposes to have a continuous parameterization,
otherwise small changes in the data can result in arbitrarily large
changes in the parameters.

There are numerous meanings of the location and scale param-
eters in the literature ((Zolotarev, 1986) gives six, (Nolan, in prepa-
ration) lists another five). We describe three parameterizations,
which we denote by S(α, β, γ , δ; k), k = 0, 1, 2. The user can se-
lect any of these three parameterizations to use for the estimates
of the parameters (α, β, γ , δ) in the program described below. See
the comments in the next section for details on the connection be-
tween the parameterization and the intercept.

We will say

X ∼ S(α, β, γ , δ; 0) if X = γ Z(α, β)+ δ.

This is the simplest parameterization that is continuous in
all four parameters and is a scale-location family. A second
parameterization is

X ∼ S(α, β, γ , δ; 1)

if X =


γ

Z(α, β)+ β tan

πα

2


+ δ α ≠ 1

γ


Z(1, β)+ β

2
π

log γ


+ δ α = 1.

This is the most commonly used parameterization in the modern
literature, e.g. Samorodnitsky and Taqqu (1994). But it is not
continuous in the parameters: as α → 1, the term β tan πα

2
diverges when β ≠ 0, leading to an arbitrarily large shift in the
center of the distribution. Also, it is not a scale-location family
when α = 1. Both of these facts make this a poor choice for
numerical work. Finally, we will define

X ∼ S(α, β, γ , δ; 2) if X = γα1/α(Z(α, β)− m(α, β))+ δ,

where m(α, β) is the mode of Z(α, β). This parameterization is
continuous in all parameters, it is a scale-location family, with the
mode of X at the location parameter δ, and it has the property that
S(α, β, γ , δ; 2) converges to a normal distribution with mean δ
and standard deviation γ asα → 2. This is not the case in the other
parameterizations, where the limiting standard deviation is

√
2γ .

More information on the parameterizations can be found in Nolan
(1998), where values ofm(α, β) have been computed numerically.

2. Linear regression

The regression model (1) can be written in matrix form as

y = Xθ + ϵ,

where X = (xi,j)n×k is the design matrix, θ = (θ1, θ2, . . . , θk)
T

are the regression coefficients, and ϵ = (ϵ1, ϵ2, . . . , ϵn)
T are the

errors. We will assume that there is a constant term in the model,
say xi,1 = 1 for all i. Then there are k + 3 parameters to be
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