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a b s t r a c t

We introduce theMethod of Simulated Quantiles, orMSQ, an indirect inferencemethod based on quantile
matching that is useful for situations where the density function does not have a closed form and/or
moments do not exist. Functions of theoretical quantiles, which depend on the parameters of the assumed
probability law, are matched with the sample counterparts, which depend on the observations. Since
the theoretical quantiles may not be available analytically, the optimization is based on simulations. We
illustrate the method with the estimation of α-stable distributions. A thorough Monte Carlo study and an
illustration to 22 financial indexes show the usefulness of MSQ.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of the parameters of an econometric or economic
parametric model is a first order concern. In the case that we know
the probability law that governs the random variables, Maximum
Likelihood (ML henceforth) is the benchmark technique. If we relax
the assumption of knowledge of the distribution but we still have
knowledge of the moments, the Generalized Method of Moments
(GMM henceforth) becomes the benchmark technique. However,
there aremodels that cannot be easily estimatedwithML or GMM:
stochastic volatilities, models with stochastic regimes switches, or
involving expected utilities to name a few. For those models the
likelihood function may not be available analytically (or can be
difficult to estimate), and/or the moments may not exist.

To circumvent these estimation difficulties, numerous esti-
mation methods based on simulations have been developed.
Gouriéroux andMonfort (1996) and Hajivassiliou and Ruud (1994)
introduce Simulated ML (SML), similar to ML except that sim-
ulated probabilities are used instead of the exact probabilities.
McFadden (1989), Pakes and Pollard (1989), and Duffie and Sin-
gleton (1993) independently introduced the Method of Sim-
ulated Moments (MSM), which is based on matching sample
moments and theoretical moments that are generated by simu-
lations. Gouriéroux et al. (1993) propose Indirect Inference (Ind-
Inf), a method based on estimating indirectly the parameters of
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the model of interest through matching the parameters of an aux-
iliary model. The Efficient Method of Moments (EMM) of Gallant
and Tauchen (1996) is based on the same idea.

In this article we introduce the Method of Simulated Quantiles
(MSQhenceforth). Since it is based onquantiles, it is amoment-free
method. And since it is based on simulations,we donot need closed
form expressions of any function that represents the probability
law of the process. Also, due to the robustness of quantiles, MSQ
is appropriate when data shows unusually large observations that
do not follow the same process as the rest of the observations. In a
nutshell, MSQ is based on a vector of functions of quantiles. These
functions can be either computed fromdata (the sample functions)
or from the distribution (the theoretical functions). The estimated
parameters are those that minimize a quadratic distance between
both. Since the theoretical functions of quantiles may not have a
closed form expression, we rely on simulations. MSQ is therefore
an application of the IndInf principle of Gouriéroux et al. (1993),
where the vector of functions of quantiles stands for the vector
of auxiliary parameters. Throughout the article, we exemplify the
method with the α-stable distribution. Different fonts are used in
Sections 1 and 2 to make a clearcut distinction between the theory
and the example, which ends with a white square.

Example. Let Xt be a random variable distributed following an
α-stable distribution that is represented as Xt ∼ Sα(σ , β, µ).
The parameter α ∈ (0, 2], often denoted as tail index, measures
the thickness of the tails and governs the existence of moments:
E[Xp

t ] < ∞, ∀p < α. Asymmetry is captured by β ∈ [−1, 1]. The
dispersion parameter σ ∈ R+ expands or contracts the distribu-
tion, and the location parameterµ ∈ R controls the location of the
distribution. Theα-stable distributions possess the property of sta-
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bility,whichplays an important role in the illustration: Linear com-
binations of i.i.d. α-stable random variables with the same α are
also α-stable distributed, i.e. if Xi,j ∼ Sα(σj, βj, µj) for j = 1, . . . , J ,
then

J
j=1 ωjXi,j ∼ Sα(σ , β, µ).

The probability density functions (pdf) of the α-stable distribu-
tion does not have a closed form. Since it is a complicated inte-
gral, even difficult to evaluate numerically, estimation by ML has
been often not considered in applied work (though the theoretical
properties of the ML estimator exist, DuMouchel (1973) and the
actual estimation has been performed by Nolan (2001)). However,
the characteristic function (CF hereafter) has a manageable closed
form2:

E[exp{iθXt}]

=



exp

−σ α

|θ |
α

1 − iβ(signθ) tan

πα

2
(|σθ |

1−α
− 1)


+iµθ


if α ≠ 1

exp

−σ |θ |


1 + iβ

2
π

(signθ) ln(σ |θ |)


+ iµθ


if α = 1.

All the methods based on the CF match the theoretical and sample
counterparts, but in different ways.3 A problem inherent to these
methods is the choice of the grid of frequencies at which to eval-
uate the CF. While Fielitz and Rozelle (1981) recommend, on the
basis of Monte Carlo results, matching only a few frequencies, oth-
ers, like Feuerverger and McDunnough (1981), recommend using
as many frequencies as possible. However, in the latter case, Car-
rasco and Florens (2002) have shown that, even asymptotically,
matching a continuum of moment conditions introduces a funda-
mental singularity problem.

An alternative is the use of simulation-based methods. From a
Bayesian perspective Buckle (1995), Qiou and Ravishanker (1998),
and Lombardi (2007) use Monte Carlo Markov Chain methods.
Froma frequentist perspective, and since randomnumbers fromα-
stable distributions can be obtained straightforwardly, IndInf and
EMM are appealing, as has been shown by Garcia et al. (2011) and
Lombardi and Calzolari (2008). They both use a skewed-t distribu-
tion as auxiliary model.

Finally, Fama and Roll (1971) andMcCulloch (1986) propose us-
ing functions of quantiles. Four specific functions of quantiles are
constructed to capture the same features as those captured byα,β ,
σ andµ. Since the pdf does not have a closed form, so do the cumu-
lative distribution function and the quantiles. Estimation has to be
done either by simulation or by tabulation. They opt for the latter.
Fama and Roll (1971) and McCulloch (1986) estimate the param-
eters by calibrating the value of the sample functions of quantiles
with tabulated values of the theoretical quantiles. This is a fast way
to estimate the parameters, since it avoids optimization, but the

2 A different parametrization, among others, is given by

E[exp{iθXt }]
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The one showed in the main body of the text is commonly used in numerical
computations. For instance, Chambers et al. (1976) use it for simulation.
3 Since the sample CF is a random variable with complex values, one can

think about (i) matching moments associated to real and imaginary components
respectively (Press, 1972; Fielitz and Rozelle, 1981), (ii) minimizing a distance
between the sample and the theoretical CF functions (Paulson et al., 1975;
Feuerverger and McDunnough, 1981; Carrasco and Florens, 2002), (iii) performing
a regression analysis between the real and imaginary parts of the sample and
theoretical CF (Koutrouvelis, 1980), or (iv) using the fast Fourier transform to
express the likelihood as a function of the CF (Chenyao et al., 1999).

theoretical properties remain unclear and the extension to the case
of linear combinations of α-stable random variables is not possible
(since the tail index has to be the same for all the random variables,
estimation has to be done jointly). �

MSQ combines the simulation-based and the quantile-based
methods. It is broader than Fama and Roll (1971) and McCulloch
(1986), which were designed for the estimation of the α-stable
distribution. In fact, MSQ is very general as it applies to any model
and distribution. Moreover, it does not make any assumptions
on the functional forms for the functions of quantiles. A second
advantage is that the method is not based on tabulations but
on simulations. This allows a larger flexibility and accuracy.
Indeed, tabulation requires interpolation if the sample functions
of quantiles are not exactly equal to the tabulated theoretical
functions of quantiles. Third, we provide an asymptotic theory that
shows the consistency, asymptotic normality and the asymptotic
variance–covariance matrix of the estimated parameters.

Estimation via quantiles is a natural alternative to moment-
based methods and tracks back to Aitchison and Brown (1957).
They estimate a three-parameter log-normal distribution by
matching quantiles. A similar result is also found in Bury (1975).
Quantiles can also be used to construct functions that measure
aspects of the probability distribution. Let qτ denote the τ -th
quantile of Xt for τ ∈ (0, 1). The median, q0.50, is often used as
an estimator of the location. The interquartile range, q0.75–q0.25 is a
natural measure of dispersion. Bowley (1920) and Hinkley (1975)
proposed the quartile skewness (known as the Bowley coefficient):

BC =
(qτ − q0.5) − (q0.5 − q1−τ )

(qτ − q1−τ )
.

The smaller τ , the less sensitive to outliers, but the less information
from the tails it uses. This measure of asymmetry is dispersion and
location invariant, i.e. γ (aXt + b) = γ (Xt), where γ denotes the
abovemeasure. As far asmeasures for tail thickness are concerned,
Moors (1988) proposed

Mo =
(q0.875 − q0.625) + (q0.375 − q0.125)

(q0.750 − q0.250)
.

The two terms in the numerator are large if little probabilitymass is
concentrated in the neighborhood of the first and third quartile. It
is standardized by the interquartile range to guarantee invariance
under linear transformations.4

The rest of the paper is organized as follows. In Section 2we first
introduce notation followed byMSQ. Each step of the presentation
of the method is illustrated with our example. We also show the
assumptions and the asymptotic distribution of the estimators. In
Section 3we report the results of aMonte Carlo study based on our
example.We consider univariate andmultidimensional estimation
ofα-stable distributions.Multidimensional should not bemistaken
with multivariate. By multidimensional we mean joint estimation
of univariate distributions that share the same tail index. For
the univariate case, our method is compared with McCulloch
(1986). In Section 4 we show an illustration to 22 world-wide
market indexes, assumed to be distributed according to α-stable
distributions. We first estimate the parameters independently.
Then we estimate them jointly assuming a common tail index,
which is needed for the construction of linear combinations, as we
show in the last part of the section. Section 5 concludes. Proofs and
other technicalities are relegated to the Appendix.

2. The method of simulated quantiles

Consider a random variable X that follows a distribution D(θ),
where θ denotes the vector of unknown parameters that are in

4 About conditional quantile based kurtosis measures see Coroneo and Veredas
(forthcoming).
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