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We develop an asymptotically chi-squared statistic for testing moment conditions E[m; (6°)] = 0, where
m¢(6°) may be weakly dependent, scalar components of m;(6°) may have an infinite variance, and
E[m;(0)] need not exist for any € under the alternative. Score tests are a natural application, and in general
a variety of tests can be heavy-tail robustified by our method, including white noise, GARCH affects,
omitted variables, distribution, functional form, causation, volatility spillover and over-identification. The
test statistic is derived from a tail-trimmed sample version of the moments evaluated at a consistent plug-
in ér for 6°. Depending on the test in question and heaviness of tails, éT may be any consistent estimator
including sub-T'/2-convergent and/or asymptotically non-Gaussian ones, since éT can be assured not
to affect the test statistic asymptotically. We adapt bootstrap, p-value occupation time, and covariance
determinant methods for selecting the trimming fractile in any sample, and apply our statistic to tests of
white noise, omitted variables and volatility spillover. We find it obtains sharp empirical size and strong
power, while conventional tests exhibit size distortions.
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1. Introduction

We propose an asymptotically chi-squared statistic for testing
moment conditions in the presence of heavy tails.

Casting inference within a moment condition framework cov-
ers a broad array of tests. Moment condition [MC] tests, as well
as those with MC interpretations (like score tests), include tests
of omitted or instrumental variables, functional form, distribu-
tion, conditional heteroscedasticity, over-identification, causation,
volatility spillover, structural change, order selection and encom-
passing tests. Notable theory contributions for iid data include
Hausman (1978), White (1981), Hansen (1982), Newey (1985),
Bierens (1990), Wooldridge (1990), Imbens et al. (1998) and
Kitamura et al. (2004) to name very few. Moment equality and
inequality tests for time series are developed in de Jong (1996),
Florens et al. (1998), Bai (2003), Ghysels and Guay (2003), Hill
(2008) and Bontemps and Meddabhi (in press), amongst others.

Applying moment based inference to heavy tailed data is
particularly relevant since evidence for heavy tails across dis-
ciplines is substantial, ranging from financial, macroeconomic,
auction, actuarial, and meteorological to network telecommuni-
cation data. The literature is vast, but notable surveys include
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Embrechts et al. (1997) and Finkenstddt and Rootzén (2003). See
also Hill and Shneyerov (2010). In general, by their sample mo-
ment form, MC tests require the existence of higher moments to
ensure standard asymptotics. As a consequence, this forces pos-
sibly very severe moment restrictions on an underlying process
that may fail for even mildly volatile data. One example is es-
timating equations for GARCH models as the basis of a test of
over-identifying restrictions or model mis-specification. A finite
variance may require the GARCH process to have a finite eighth
moment, or an error to have a finite fourth moment, depending
on the equation form (Hill and Renault, 2010). The problem of re-
quiring “more than just the hypotheses of interest” was noted in
Wooldridge (1990, p. 18) concerning a variety of contexts, although
not heavy tails.

Let m¢ : ® — R? be parametric test equations where ©
is a compact subset of R", and q,r > 1, and for simplicity of
exposition assume m, (#) is continuous and differentiable. The null
hypothesis is

Ho : E[m¢(6°)] =0 for unique 0° € ® (1)
with a general alternative
H; : the null is false. (2)

We allow for heavy tails such that E[m?,(8°)] = oo and do not
require the moment E[m, (6)] to exist under H; for any 6. If the test
equation m,(0) is integrable uniformly on @, then the alternative
becomes H; : E[m;(8°)] # 0. In general # may represent a subset
of parameters, such as when testing for the autoregression order in
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an AR-GARCH. Alternatively, the equations may be parameter free
m;(6) = m,, such as in a test of white noise on an observable time
series. See Section 3 for examples.

In order to conquer the challenge of heavy tails, and arrive
at a test statistic that is easy to compute and interpret due to a
standard limit distribution, we trim a negligible sample fraction of
those m; ;(0) that may be heavy tailed. Let {k; ; , k2 ; 7} be integer
fractile sequences representing the number of trimmed left-tailed
and right-tailed observations from each sample {m; , (9)}th] with
sample size T. We enforce negligible trimming by assuming
{k1i1, ko,; 7} are intermediate order sequences: kj;r — oo and
kiir/T — 0 (Leadbetter et al., 1983; Hahn et al., 1991). Define tail
specific observations of m; ;(#) and their sample order statistics:

(0) = my (0) x I (m; () <0) and

,(1)(9)5" z(T)(9)<0
m{" @) = m; () x I (m;(®) > 0) and
mi @) > >m ) > 0.

If an equation m,»,t(e ) has an infinite variance, or its higher
moments are unknown, we trim m; ;(6) such that it lies between
its lower kq ; r/Tth and upper k; ; v /Tth sample quantiles:

e (0) = mig(0)
<1 (mig, ) @) < m @) <mf, ) ©)
= m, () x lir. (6) 3)

it 0) = [mic ©) < lirc @]

where Ii,T,t (0) = 1if equation i is not trimmed.

Note I(A) = 1isAis true, and 0 otherwise. If m; ;(6°) is symmetric
then use! I(jm;((0)] < m{, (6)) where m® ) = |mi ()],
kit — ocoand k;r /T — 0.

Now let éT be any consistent estimator of #°. The proposed
Tail-Trimmed Moment Condition [TTMC] test statistic has a
quadratic form

T ! T
Wy = (Z n%’;,[(er)> () (Z n%“(er)> (4)
t=1 t=1
where §T () is a kernel covariance estimator

T
$r(0) =Y k(s—1)/yr)

s,t=1
x s (0) — o)} {ms,0) — mE @),

and ME©) = 1/TY[_, Mf (0), k(-) is a kernel function and
yr — oo is abandwidth parameter. Trimming introduces spurious
dependence unless m; ((9°) is iid, so an HAC is in general preferred.
See Section 2.3.

Our framework is built on the principles of Generalized of
Method of Tail-Trimmed Moments by Hill and Renault (2010)
and denoted HR (2010). Indeed, Y";_, % ,(0) x S;'(Br) x

Zthl m} . (9) is simply the efficiently weighted GMTTM criterion

Ty m; (%) is symmetric, in theory it suffices to use I(ml.(?k)1 T)(G) < mi:(0) <
ml) (©) with kir = o ©®) and

m;, (kz .T)
1 (0) may be quite different, even for large T, and our simulation experiments
(@)

ko,iTVT. In practice, however, m!

m;, (kzn)

show I(|m; ()| < m; ki )(9)) works exceptionally well because it forces the same
left- and right-tail threshold.

with consistent plug-in ér, provided there are at least as many
equations as parameters ¢ > 1, and (1) holds. The primary
contribution of this paper is to provide an accompanying theory
of heavy tail robust inference for GMM, with an arbitrary plug-in
ér that may not have a Gaussian limit nor be T'/2-convergent.

We prove Wy is asymptotically chi-squared under the null
(1) and suitable regularity conditions. Further, under these
conditions WT has non-negligible power against a sequence of local
alternatives, which implies WT — oo under (2) with probability
one. In both cases WT has the same limiting properties whether
tails are heavy or not due to self-standardization and trimming
negligibility. This is a major advantage over other methods (see
below) since other than E[m,(6°)] = 0 under H, we never need
to know if m;(6°) lacks higher moments. Small sample power,
however, can in principle be affected by trimming when tails are
thin. See Theorem 2.2 for details, and see Section 5 for simulation
evidence that trimming need not reduce power.

In the presence of heavy tails Zthl 3 (6°) and Or typically
have different rates of convergence. In many cases the test
component ZL] ﬁ1;t(0°) can be slowed simply by trimming
more (i.e. faster kj;r — 00), implying many plug-ins éT will
not affect WT, hence @T need not be T'/?-convergent nor possess
a Gaussian limit. This is evidently the first study to allow sub-
T'/2 and super-T/?-convergent estimation, although Antoine and
Renault (2012) tackle heterogeneous rates at or below T'/? for
GMM. We further develop these ideas by example in Section 3
since deep results require a specification for m;(9). Depending
on the form of m;(6°) and tails, valid plug-ins include at least
OLS, LAD, QML and GMM, and information theoretic estimators
like Empirical Likelihood, each with non-Gaussian limits when
tails are heavy. Similarly, we may use estimators robust to data
contamination that are not robust to heavy tails, like Least
Trimmed Squares and Quasi-Maximum Trimmed Likelihood (see
Cizek (2008) and his references). Finally, heavy tailed robust
estimators with Gaussian limits are valid, like Peng and Yao’s
(2003) Log-LAD, Ling’s (2005, 2007), Least Weighted Absolute
Deviations [LWAD] and Quasi-Maximum Weighted Likelihood
[QMWL], and HR’s (2010) Generalized Method of Tail-Trimmed
Moments [GMTTM].

Further transformations of the equations may lead to robust-
ness of WT to any éT that converges no slower than GMTTM,
including orthogonal projections (Wooldridge, 1990; Bai, 2003;
Bontemps and Meddahi, in press). In the literature robustness is ev-
idently only ensured for T'/?-convergent plug-ins.> We only briefly
discuss orthogonal transformations in Section 2 due to space con-
straints.

In Section 4 we discuss data-driven methods for choosing
the number of trimmed m,(9)’s, including p-value occupation
time, wild bootstrap, and a covariance determinant technique. We
then investigate tests of white noise and omitted variables in a
simulation study in Section 5, and we study tests of volatility
spillover in Hill and Aguilar (2011), the technical appendix to this
paper. Our simulations serve two purposes. First, they demonstrate
heavy tails may distort empirical size of non-robust tests, adding to
existing evidence (e.g. de Lima (1997) and Runde (1997)). Second,
trimming remarkably few large m, (6) leads to sharp empirical size
while still retaining power in most cases, and substantial power

2 GMTTM for heavy tailed GARCH is 0,(T'/?) and is guaranteed not to affect Wi
for a test of volatility spillover couched in a GARCH framework (see HR (2010) and
Hill and Aguilar (2011)). Sub-T"/?-convergence also arises due to kernel smoothing
in estimating equations, in-fill asymptotics, and nearly-weak GMM. See Antoine and
Renault (2012) for examples and references.
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