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a b s t r a c t

We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial
asset prices. Our estimates are based on in-fill asymptotics for directly identifying the jumps, together
with Extreme Value Theory (EVT) approximations and methods-of-moments for assessing the tail decay
parameters and tail dependencies. On implementing the procedures with a panel of intraday prices for a
large cross-section of individual stocks and the S&P 500 market portfolio, we find that the distributions
of the systematic and idiosyncratic jumps are both generally heavy-tailed and close to symmetric, and
show how the jump tail dependencies deduced from the high-frequency data together with the day-to-
day variation in the diffusive volatility account for the ‘‘extreme’’ joint dependencies observed at the daily
level.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Tail events and non-normal distributions are ubiquitous in
finance. The earliest comprehensive empirical evidence for fat-
tailed marginal return distributions dates back more than half a
century to the influential work of Mandelbrot (1963) and Fama
(1965). It is now well recognized that the fat-tailed unconditional
return distributions first documented in these, and numerous
subsequent studies may result from time-varying volatility and/or
jumps in the underlying stochastic process governing the asset
price dynamics. Intuitively, periods of high-volatility can result in
seemingly ‘‘extreme’’ price changes, even though the returns are
drawn from a normal distribution with light tails, but one with
an unusually large variance; see e.g., Bollerslev (1987), Mikosch
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and Starica (2000), and the empirical analyses in Kearns and
Pagan (1997) and Wagner and Marsh (2005) pertaining to the
estimation of tail parameters in the presence of GARCH effects.
On the other hand, the aggregation of multiple jump events over
a fixed time interval will similarly result in fat-tailed asset return
distributions, even for a pure Lévy-type jump processes with no
dynamic dependencies; see, e.g., Carr et al. (2002). As such, while
fundamentally different, these two separatemechanismswill both
manifest themselves in the form of apparent ‘‘tail’’ events and
leptokurtic marginal return distributions.2

These same general issues carry over to a multivariate context
and questions related to ‘‘extreme’’ dependencies across assets.
In particular, it is well documented that the correlations between
equity returns, both domestically and internationally, tend to be
higher during sharp market declines than during ‘‘normal’’ peri-
ods3; see e.g., Longin and Solnik (2001) and Ang and Chen (2002).

2 Importantly, these different mechanisms also have very different pricing
implications and risk premia dynamics, as recently explored by Bollerslev and
Todorov (2011b).
3 The use of simple linear correlations as a measure of dependence for ‘‘extreme’’

observations has been called into questionbyEmbrechts et al. (2002), amongothers.
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Similarly, Starica (1999) documents much stronger dependencies
for large currency moves compared to ‘‘normal-sized’’ changes,
while Jondeau (2010) based on an explicit parametric model re-
ports much stronger tail dependence on the downside for several
different equity portfolios.

In parallel to the marginal effects discussed above, it is
generally unclear whether these increased dependencies in the
tails are coming from commonalities in time-varying volatilities
across assets and/or common jumps. Poon et al. (2004), for
instance, report that ‘‘devolatilizing’’ the daily returns for a set
of international stock markets significantly reduces the joint
tail dependence, while Bae et al. (2003) find that time-varying
volatility and GARCH effects cannot fully explain the counts
of coincident ‘‘extreme’’ daily price moves observed across
international equity markets. More closely related to the present
paper, recent studies by Bollerslev et al. (2008), Jacod and Todorov
(2009), and Gobbi and Mancini (2009), based on high-frequency
data and nonparametric methods, have all argued for the presence
of common jump arrivals across different assets, thus possibly
inducing stronger dependencies in the ‘‘extreme’’.

In light of these observations, one of the goals of the present
paper is to separate jumps from volatility to more directly assess
the ‘‘extreme’’ dependencies inherent in the jump tails. Motivated
by the basic idea from asset pricing finance that only non-
diversifiable systematic jump risks should be compensated, we
further dissect the jumps into their systematic and idiosyncratic
components. This decomposition in turn allows us to compare and
contrast the behavior of the two different jump tails and how they
impact the return distributions.4

Our estimation methodology is based on the idea that even
though jumps and time-varying volatility may have similar
implications for the distribution of the returns over coarser
sampling frequencies, the two features manifest themselves very
differently in high-frequency returns. Intuitively, treating the
volatility as locally constant over short time horizons, it is possible
to perfectly separate jumps from the price moves associated
with the slower temporally varying volatility through the use of
increasingly finer sampled observations. Empirically, this allows
us to focus directly on the high-frequency ‘‘filtered’’ jumps.
Relying on the insight from Bollerslev and Todorov (2011a) that
regardless of any temporal variation in the jump intensity, the
jump compensator for the ‘‘large’’ jumps behaves like a probability
measure, we non-parametrically estimate the decay parameters
for the univariate jump tails using a variant of the Peaks-Over-
Threshold (POT) method.5

Going one step further, we characterize the extreme joint
behavior of the ‘‘filtered’’ jump tails through non-parametric es-
timates of Pickands (1981) dependence function as well as the
residual tail dependence coefficient of Ledford and Tawn (1996,
1997). The Pickands dependence function succinctly character-
izes the dependence of the limiting bivariate extreme value
distribution.When the latter has independentmarginals, the resid-
ual tail dependence coefficient further discriminates among the
dependencies that disappear in the limit.6 We implement several

4 In a related context, Barigozzi et al. (2010) have recently explored a factor
structure for disentangling the total realized variation for a large panel of stocks
into a single systematic component and remaining idiosyncratic components, while
Todorov and Bollerslev (2010) propose a framework for the estimation of separate
continuous and jump CAPM betas.
5 The POT method for characterizing extremes dates back to Fisher and Tippett

(1928). It has been formalized more recently by Balkema and deHaan (1974) and
Pickands (1975); for general textbook discussions see also Embrechts et al. (2001)
and Jondeau et al. (2007).
6 In technical terms, the Pickands dependence function captures asymptotic tail

dependence,while the residual tail dependence coefficient captures pre-asymptotic
tail dependence.

different estimators for the Pickands dependence function and the
residual tail dependence coefficient. Together with the estimated
decay parameters for each of the underlying univariate extreme
distributions, these summary measures effectively describe the
key features of the bivariate joint tail behavior.7

Our actual empirical analysis is based on high-frequency
observations for fifty large capitalization stocks and the S&P 500
aggregatemarket portfolio spanning the period from1997 through
2010. We find that the number of ‘‘filtered’’ idiosyncratic jumps
exceeds the number of systematic jumps for all of the stocks in
the sample, and typically by quite a large margin. Nonetheless,
the hypothesis of fully diversifiable individual jump risk is clearly
not supported by the data, thus pointing to more complicated
dependence structures in the tails than hitherto entertained in
most of the existing asset pricing literature.8

Even though the assumption of ‘‘light’’ Gaussian jump tails
cannot necessarily be rejected formany of the individual estimates,
the combined evidence for all of the stocks clearly supports the
hypothesis of heavy jump tails. Our estimates for the individual
jump tail decay parameters also suggest that the tails associated
with the systematic jumps are slightly fatter than those for
the idiosyncratic jumps, albeit not uniformly so. Somewhat
surprisingly, we also find that the right tail decay parameters for
both types of jumps in quite a few cases exceed those for the left
tail.

Our estimates of various dependence measures reveal a strong
degree of tail dependence between themarket-wide jumps and the
systematic jumps in the individual stocks. This therefore calls into
question the assumption of normally distributed jumps previously
used in the asset and derivatives pricing literature.

Further, comparing our high-frequency based estimation re-
sults with those obtained from daily returns, we find that the latter
indicatemuchweaker tail dependencies. Intuitively,while the esti-
mates based on the daily returns represent the tail dependence at-
tributable to both systematic jumps and common volatility factors,
both ofwhichmay naturally be expected to be associatedwith pos-
itive dependence, the idiosyncratic jumps when aggregated over
time will tend to weaken the dependence. In contrast, by focus-
ing directly on the high-frequency ‘‘filtered’’ systematic and id-
iosyncratic jumps, we are able to much more accurately assess the
true extreme jump tail dependencies, and assess how the differ-
ent effects impart the dependencies in the lower-frequency daily
returns.

The rest of the paper is organized as follows. Section 2 intro-
duces the formal setup and assumptions. Section 3 outlines the
statistical methodology and econometric procedures, beginning in
Section 3.1 with the way in whichwe disentangle jumps from con-
tinuous prices moves, followed by a discussion of our univariate
tail estimation procedures in Section 3.2, and the framework that
we rely on for assessing the joint jump tail dependencies in Sec-
tion 3.3. Section 4 presents the results from an extensive Monte
Carlo simulation study designed to assess the properties of the dif-
ferent estimators in an empirically realistic setting. Section 5 sum-
marizes our main empirical results, starting in Section 5.1 with a
brief description of the data, followed by our findings pertaining to
the individual jump tails in Section 5.2, and the bivariate jump tail
dependencies in Section 5.3. Section 6 concludes.

7 For a general textbook discussion of the relevant concepts, see, e.g., Coles
(2001) and Beirlant et al. (2004). Existing applications of these ideas have pri-
marily been restricted to climatology and insurance. Steinkohl et al. (2010),
for instance, have recently employed this approach to characterize the asymp-
totic dependence for high-frequency wind speeds across separate geographical
locations.
8 The mere existence of market-wide jumps, of course, refutes the hypothesis of

fully diversifiable jump risk as in Merton (1976). The estimates reported in, e.g.,
Eraker et al. (2003), also suggest large risk premia for systematic jump risk.
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