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a b s t r a c t

Ornstein–Uhlenbeck models are continuous-time processes which have broad applications in finance
as, e.g., volatility processes in stochastic volatility models or spread models in spread options and
pairs trading. The paper presents a least squares estimator for the model parameter in a multivariate
Ornstein–Uhlenbeckmodel driven by amultivariate regularly varying Lévy processwith infinite variance.
We show that the estimator is consistent. Moreover, we derive its asymptotic behavior and test statistics.
The results are compared to the finite variance case. For the proof we require some new results on
multivariate regular variation of products of random vectors and central limit theorems. Furthermore,
we embed this model in the setup of a co-integrated model in continuous time.
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1. Introduction

In this paper we investigate the asymptotic properties of the
least squares estimator for the model parameter in a multivariate
Ornstein–Uhlenbeck model. Ornstein–Uhlenbeck processes are
natural extensions of autoregressive processes of order one in
discrete time to continuous time. Hence, they belong to the
class of continuous-time autoregressive moving average (CARMA)
processes. Not only that the Ornstein–Uhlenbeck process itself is a
CARMA process but also the state space representation of a CARMA
process leads to a multivariate Ornstein–Uhlenbeck process.
Applications of CARMA processes include econometrics (see
Bergstrom (1990), and Phillips (1974)), high-frequency financial
econometrics (see Todorov (2009)), and financial mathematics
(see Benth et al. (2010)). However, CARMA processes clearly
have potential applications in all areas involving time series data,
e.g. social sciences, medicine, biology or physics.

Typical stylized facts of high frequency financial time series as
asset returns and exchange rates are jumps and a heavy tailed
distribution which is peaked around zero. These characteristics
were already noticed in the 60s by the influential works of
Mandelbrot (1963) and Fama (1965). Thus, α-stable distributions
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as a generalization of a Gaussian distribution have often been
discussed as more realistic models for asset returns than the usual
normal distribution; see Rachev et al. (1999). More applications
of heavy tailed distributions in economics and finance can be
found in Adler et al. (1998), Rachev and Mittnik (2000) and
Rachev (2003). Processes exhibiting infinite second variance have
not only appeared in finance but also, e.g., in insurance, signal
processing and teletraffic data. For an overview on the topic of
heavy tailed distributions and their applications we refer to the
excellent monograph of Resnick (2007). It is well known that for
heavy tailed distributions standard statistical techniques do not
apply in the usual way.

Further common features of high frequency financial time
series are non-stationarity and time-varying volatility. A famous
stochastic volatility model is the Ornstein–Uhlenbeck model
propagated by Barndorff-Nielsen and Shephard (2001). They start
from the classical Black–Scholes model for the log asset price

dX(t) =

µ − σ 2δ


dt + σ dB(t), (1)

where µ, δ ∈ R are the instantaneous drift and the premium
parameter, σ > 0 is the constant volatility and (B(t))t≥0 is the
Brownian motion, and plug in (1) the stochastic Ornstein–
Uhlenbeck process (σ 2(t))t≥0 as a volatility process instead of the
constant volatility σ 2. This leads to

dX(t) =

µ − σ 2(t)δ


dt + σ(t) dB(t), (2)
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where (σ (t))t≥0 has the representation

σ 2(t) = e−λtσ 2(0) + e−λt
 t

0
eλsL(ds) for t ≥ 0, (3)

with λ > 0 and (L(t))t≥0 a positive Lévy process also known as a
subordinator. Thismodel is capable of showingmost of the stylized
facts, e.g. volatility jumps, clustering and heavy tails (cf. Fasen
et al. (2006)). It was used and studied in detail in finance, see
e.g., Barndorff-Nielsen et al. (2002), Griffin and Steel (2006), and
Roberts et al. (2004) and extended to the multivariate case with
a multivariate Ornstein–Uhlenbeck type process by Pigorsch and
Stelzer (2009).

Let (L(t))t≥0 be a p-dimensional Lévy process and Σ ∈ Rd×p,
Λ ∈ Rd×d, d, p ∈ N, where the eigenvalues of Λ have strictly
positive real parts. Then a multivariate Ornstein–Uhlenbeck
process (Z(t))t≥0 in Rd is defined as

Z(t) = e−ΛtZ(0) +

 t

0
e−Λ(t−s)Σ L(ds) for t ≥ 0. (4)

Under our assumptions on L, which will follow below, we can
choose a stationary version of (Z(t))t≥0 since the eigenvalues of
Λ have strictly positive real parts (see Sato and Yamazato (1984,
Theorem 4.1)). For given observations

Z′

n = (Z(1), . . . , Z(n)) ∈ Rd×n,

where we write Z′

i,j = (Z(i), . . . , Z(j)) ∈ Rd×(j−i+1),

at a discrete-time grid, we study the properties of the least
squares estimator for e−Λ, since the estimation of Λ itself is not
identifiable (cf. Lemma3.1 below). AnOrnstein–Uhlenbeck process
observed at discrete time points is a multivariate AR(1) process
with representation

Z(k) = e−ΛZ(k − 1) + ξk

where ξk =

 k

k−1
e−Λ(k−s)Σ L(ds) for k ∈ N. (5)

The usual least squares estimator is then

e−Λn = Z′

2,nZ1,n−1(Z′

1,n−1Z1,n−1)
−1. (6)

If the second moment of ∥L(1)∥ exists, then it is well known from
the statistical inference of multivariate ARMA models that the
estimator (6) is asymptotically normal and unbiased (see Hannan
(1970, Chapter 6) or Proposition 3.2 below). In the finite variance
case the least squares estimator is inefficient. More efficient
estimators for the mean reversion parameter in one-dimensional
Ornstein–Uhlenbeck models with finite variance are presented
in Jongbloed et al. (2005), Brockwell et al. (2007), Taufer and
Leonenko (2009) and Spiliopoulos (2009).

The main focus of this paper is to derive the asymptotic
distribution of the least squares estimator (6), if ∥L(1)∥ has infinite
variance. To be precise we study in detail the case where L(1) is
multivariate regularly varying of an index less than 2, derive test
statistics and compare our results to the case with finite second
moments. The least squares estimator has the advantage that it
is easy to implement and it performs much better in the heavy
tailed model than in the finite variance case. In the limit the
least squares estimator converges to a heavy tailed distribution
which is a function of stable random variables. However, one
cannot calculate the distribution analytically and it still depends
on the unknown tail index of the underlying process. This makes it
difficult to develop asymptotic approximations for the purpose of
statistical inference.

Our result extends those of Davis and Resnick (1986) for the
estimation of the autocorrelation function of a discrete-time AR(1)
process from the one-dimensional case to the multivariate case.

To the best of our knowledge statistical inference for multivariate
linear processes with infinite variance has not been well explored
in the literature yet, apart from the work of Davis et al. (1985)
and Meerschaert and Scheffler (2000, 2001) regarding only the
convergence in probability of the normalized autocovariance
function and the cross-correlation. The estimation of heavy tailed
continuous-time AR(1) models was only considered in Hu and
Long (2007, 2009) paying attention only at one-dimensional
stable Ornstein–Uhlenbeck processes. In contrast to ours, their
observation grid gets finer if the time scale increases or they
observe the process on a whole time interval.

It is worth noting that in the heavy tailed case of one-
dimensional linear models in discrete time M-estimators, in
particular, the least absolute deviation estimator, can be more
efficient than least squares estimators because outliers do not
dominate as in the case of least squares estimators (cf. Calder
and Davis (1998), and Davis et al. (1992)). There, the least
squares estimators give too much influence to outliers. Thus, the
extension toM-estimators in themultivariate setup of continuous-
time linear models will be considered in some future work and
compared to the least squares estimator of this paper.

The second part of this paper is devoted to the application
of Ornstein–Uhlenbeck processes and its statistical inference in
the context of co-integration. Co-integration is a well known
phenomenon in economic time series as e.g., interest rates
on assets of different maturities, prices of commodities in
different parts of the world, income and expenditure by the
local government, the value of sales and production costs of an
industry, and spot and future prices in commodity markets (see
Engle and Granger (1991), Engle and White (1999), and Lütkepohl
and Krätzig (2004)). This means that even though time series
are non-stationary there exist linear combinations of them which
render stationarity. Typical models for asset prices are exponential
Lévy models (cf. Mandelbrot and Taylor (1967) and Eberlein
(2009)). Although, exponential Lévymodels are not able to capture
stochastic volatility, they are the straightforward extension of the
geometric Brownian motion in the Black–Scholes model modeling
jumps and going away from the Gaussian assumption. The analytic
form of the exponential Lévy model is simple, easier to handle
and to fit to data than stochastic volatility models. In spread
options and pairs trading, which is a popular investment strategy
among hedge funds and investment banks, the concept is to find
some pairs of assets which tend to move together in the long-run,
i.e., they are co-integrated. There the logarithmic asset prices of
two assets are modeled as

X(t) = AY (t) + Z(t) for t ≥ 0,
Y (t) = L(t) for t ≥ 0,

(7)

where (Z(t))t≥0 is a stationary Ornstein–Uhlenbeck process,
(L(t))t≥0 is a Lévy process and A ∈ R is a constant (see Benth
and Benth (2006), Duan and Pliska (2004), Ekström et al. (2009),
and Elliott et al. (2005)). Models of this type are also applied in
electricity spot price dynamics (see Benth et al. (2008)). In the
long-term the first asset behaves like a multiple of the second
asset only in the short-term; there are some deviations modeled
by (Z(t))t≥0. The Ornstein–Uhlenbeck parameter λ of (Z(t))t≥0
reflects the speed of mean reversion to the equilibrium and hence,
this parameter is important to know and to estimate for the
optimal strategy in a pairs trade. It is also possible to allow some
short-term deviations of (Y (t))t≥0 from (L(t))t≥0 by adding a noise
term (cf. Fasen (2012)). For ease of notation we neglect this here.
The linear regression model (7) is commonly used and basic in
econometrics. In a two-step procedure we will estimate A and
e−λ. In this paper we investigate a multiple version of (7) and its
statistical inference where the noise is modeled by a multivariate
Ornstein–Uhlenbeck model.



Download English Version:

https://daneshyari.com/en/article/5096126

Download Persian Version:

https://daneshyari.com/article/5096126

Daneshyari.com

https://daneshyari.com/en/article/5096126
https://daneshyari.com/article/5096126
https://daneshyari.com

