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a b s t r a c t

In many semiparametric models, the parameter of interest is identified through conditional expectations,
where the conditioning variable involves a single-index that is estimated in the first step. Among the
examples are sample selection models and propensity score matching estimators. When the first-step
estimator follows cube-root asymptotics, no method of analyzing the asymptotic variance of the second
step estimator exists in the literature. This paper provides nontrivial sufficient conditions under which
the asymptotic variance is not affected by the first step single-index estimator regardless of whether it is
root-n or cube-root consistent. The finding opens a way to simple inference procedures in these models.
Results from Monte Carlo simulations show that the procedures perform well in finite samples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many empirical studies use a number of covariates to deal with
the problem of endogeneity. Using too many covariates in non-
parametric estimation, however, tends toworsen the quality of the
empirical results significantly. A promising approach in this situa-
tion is to introduce a single-index restriction so that one can retain
flexible specification while avoiding the curse of dimensionality.
The single-index restriction has long attracted attention in the lit-
erature.1

Most literature deal with a single-index model as an isolated
object, whereas empirical researchers often need to use the single-
index specification in the context of estimating a larger model.
An example is a structural model in labor economics that re-
quires a prior estimation of components such as wage equations.
When single-index components are nuisance parameters that are
plugged into the second step estimation of a finite dimensional pa-
rameter of interest, the introduction of single-index restrictions
does not improve the convergence rate of the estimated parameter

E-mail address: kysong@mail.ubc.ca.
1 For example, Klein and Spady (1993) and Ichimura (1993) proposed M-

estimation approaches to estimate the single-index, and Stoker (1986) and Powell
et al. (1989) proposed estimation based on average derivatives. See alsoHärdle et al.
(1993), Härdle and Tsybacov (1993), Horowitz and Härdle (1996), Fan and Li (1996)
and Hristache et al. (2001).

of interest which already achieves the parametric rate of
√
n. Nev-

ertheless, the use of a single-index restriction in such a situation
still has its own merits. After its adoption, the model requires
weaker assumptions on the nonparametric function and on the
kernel function. Thismerit becomes prominentwhen the nonpara-
metric function is defined on a space of a large dimension and
stronger conditions on the nonparametric function and higher-
order kernels are required. (See Hristache et al., 2001, for more de-
tails.)

This paper focuses on semiparametric models, where the pa-
rameter of interest is identified through a conditional expectation
function and the conditioning variable involves a single-indexwith
an unknown finite dimensional nuisance parameter. We assume
that there is a consistent first step estimator of this nuisance pa-
rameter. In this situation, a natural procedure is a two step esti-
mation, where one estimates the single-index first, and uses it to
estimate the parameter of interest in the second step. Among
the examples are sample selection models and propensity score
matching estimators. The exampleswill be discussed in detail later.

A distinctive feature of the framework of this paper is that
the first step estimator of a single-index is allowed to be either√
n-consistent or 3

√
n-consistent. The latter case of 3

√
n-consistent

single-index estimators is particularly interesting, for the frame-
work includes new models that have not been studied in the liter-
ature, such as the sample selectionmodel with conditional median
restrictions, or propensity score matching estimators with condi-
tional median restrictions. These conditional median restrictions
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often lead to a substantial relaxation of the existing assumptions
that have been used in the literature.2

Dealing with the case of a nuisance parameter that follows
cube-root asymptotics of Kim and Pollard (1990) in two step es-
timation is challenging. In typical two step estimation, the asymp-
totic variance of the second step estimator involves an additional
termdue to the first step estimation of the single-index component
(e.g. Newey and McFadden, 1994). Unless this term is shown to be
negligible, one needs to compute this additional term by first find-
ing the asymptotic linear representation of the first step estimator.
However, in the case of a first step estimator that follows cube-root
asymptotics, there does not exist such an asymptotic linear repre-
sentation. This is precisely the situation where the first step esti-
mator is a maximum score estimator proposed by Manski (1975).

The main contribution of this paper is to provide a set of con-
ditions under which the first step estimator, regardless of whether
it is

√
n-consistent or 3

√
n-consistent, does not have an impact on

the asymptotic variance of the second step estimator. This result is
convenient, because under these conditions, one can simply com-
pute the asymptotic variance as if one knows the true nuisance pa-
rameter in the single-index.

The result of this paper is based on a recent finding by the author
(Song, 2012) which offers generic conditions under which condi-
tional expectation functionals are very smooth. This smoothness
is translated in our situation into insensitivity of the parameter of
interest at a local perturbation of the single-index nuisance param-
eter.

To illustrate the usefulness of the result, this paper applies it
to new semiparametric models such as semiparametric sample
selection models with conditional median restrictions, and single-
index matching estimators with conditional median restrictions.
This paper offers procedures to obtain estimators and asymptotic
variance formulas for the estimators.

This paper presents anddiscusses results fromMonte Carlo sim-
ulation studies. Themain focus of these studies lies onwhether the
asymptotic negligibility of the first step estimator’s impact remains
in force in finite samples. For this, it is investigated whether the
estimators and the confidence sets based on the proposed asymp-
totic covariance matrix formula performs reasonably well in finite
samples. Simulation results demonstrate clearly that they do so.

The main result of this paper is closely related to the literature
of so-called generated regressors in nonparametric or semiparamet-
ric models. For example, Newey et al. (1999) and Das et al. (2003)
considered nonparametric estimation of simultaneous equation
models. Li and Wooldrige (2002) analyzed partial linear models
with generated regressors when the estimated parameters in the
generated regressors are

√
n-consistent. Rilstone (1996) and Sper-

lich (2009) studied nonparametric function estimators that involve
generated regressors. Recent contributions by Hahn and Ridder
(2010) and Mammen et al. (2012) offer a general analysis of the
issuewith generated regressors in nonparametric or semiparamet-
ric models. None of these papers considered generated regressors
with coefficient estimators that follow cube-root asymptotics.

The paper is organized as follows. The paper defines the scope,
introduces examples, and explains the main idea of this paper in
Section 2. Then Section 3 presents the formal result of the asymp-
totic distribution theory, and discusses their implications for ex-
emplarmodels. Section 4 discussesMonte Carlo simulation results,

2 For example, the semiparametric sample selectionmodel in Newey et al. (1990)
assumes that the error term in the selection equation is independent of observed
covariates. Also, parametric specifications of propensity scores in the literature of
program evaluations (such as logit or probit specifications) assume that the error
term in the program participation equation is independent of observed covariates.
(See Heckman et al., 1998a, for example.). In these situations, the assumption of
the conditional median restriction is a weaker assumption because it allows for
stochastic dependence between the error term and the observed covariates.

and Section 5 presents an empirical illustration based on a simple
female labor supply model. Some technical proofs are found in the
Appendix.

2. The scope, examples, and the main idea

2.1. The scope of the paper

Let us define the scope of the paper. Suppose that W ≡

(W1, . . . ,WL)
⊤

∈ RL, S is a dS × dϕ random matrix, and X ∈ Rd

is a random vector, where all three random quantities W , S, and
X , are assumed to be observable. We let X = [X⊤

1 , X
⊤

2 ]
⊤

∈ Rd1+d2 ,
whereX1 is a continuous randomvector andX2 is a discrete random
vector taking values from {x1, . . . , xM}. Let Θ ⊂ Rd be the space
of a nuisance parameter θ0 that is known to be identified. Denote
Uθ ≡ Fθ (X⊤θ), where Fθ is the CDF of X⊤θ . We assume that X⊤θ
is a continuous random variable for all θ in a neighborhood of θ0.
Given an observed binary variable D ∈ {0, 1}, we define
µθ (Uθ ) ≡ E [W |Uθ ,D = 1] , (1)
and when θ = θ0, we simply writeµ0(U0), where U0 ≡ Fθ0(X

⊤θ0).
The support of a random vector is defined to be the smallest closed
set in which the random vector takes values with probability one.
For m = 1, . . . ,M , let Sm be the support of X1{X2 = xm,D = 1}.
And SW be the support of W , and let ϕ : SW → Rdϕ be a known
map that is twice continuously differentiablewith boundedderiva-
tives on the interior of the support of E[W |X,D = 1]. Then we
define a map a : Θ → RdS by
a(θ) ≡ E [S · ϕ(µθ (Uθ ))|D = 1] , θ ∈ Θ. (2)
The general formulation admits the case without conditioning on
D = 1 in which case it suffices to put D = 1 everywhere.3

This paper focuses on semiparametric models where the pa-
rameter of interest, denoted by β0, is identified as follows:
β0 = H(a(θ0), b0), (3)
where H : RdS × Rdb → Rdβ is a map that is fully known, contin-
uously differentiable in the first argument, and b0 is a db dimen-
sional parameter that does not depend on θ0 and is consistently
estimable. We will see examples of β0 shortly.

Throughout this paper, we assume that there is an estimator θ̂
for θ0 which is either

√
n-consistent or 3

√
n-consistent. A natural

estimator of β0 is obtained by

β̂ ≡ H(â(θ̂), b̂),

where â(θ) is an estimator of a(θ) and b̂ is a consistent estimator
of b0. The estimator â(θ) can be obtained by using nonparametric
estimation of conditional expectation E [W |Uθ ,D = 1]. For future
reference, we denote
β̃ ≡ H(â(θ0), b̂),

an infeasible estimator using θ0 in place of θ̂ . When θ̂ is 3
√
n-

consistent, it is not clearwhether
√
n(β̂−β)will be asymptotically

normal. In fact, it is not even clearwhether β̂will be
√
n-consistent.

The main contribution of this paper is to provide conditions
under which, whenever θ̂ = θ0 + OP(n−1/3) and
√
n(β̃ − β0)

d
−→ N(0, V ), (4)

it follows that
√
n(β̂ − β0)

d
−→ N(0, V ).

This result is very convenient, because the computation of the
asymptotic variance matrix V in (4) can be done, following the
standard procedure.

3 The conditions for the identification of θ0 in many examples of semiparametric
models is already established. See Horowitz (2009). The identification of θ0 in this
paper’s context arises often in binary choice models. See Chapter 4 of Horowitz
(2009) for the identification analysis for the binary choice models.
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