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a b s t r a c t

This paper extendsmultivariate Granger causality to take into account the subspaces alongwhichGranger
causality occurs as well as long run Granger causality. The properties of these new notions of Granger
causality, along with the requisite restrictions, are derived and extensively studied for a wide variety of
time series processes including linear invertible processes and VARMA. Using the proposed extensions,
the paper demonstrates that: (i) mean reversion in L2 is an instance of long run Granger non-causality,
(ii) cointegration is a special case of long run Granger non-causality along a subspace, (iii) controllability
is a special case of Granger causality, and finally (iv) linear rational expectations entail (possibly testable)
Granger causality restriction along subspaces.
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1. Introduction

First suggested by Wiener (1956) and later developed by
Granger (1969), Granger causality (GC) and Granger non-causality
(GNC) are two of the most important concepts of time series
econometrics. Many extensions have been proposed throughout
the years: multivariate time series (Tjøstheim, 1981), enlarged
information sets (Hsiao, 1982), variable horizons (Dufour and
Renault, 1998), etc.1 Yet problems of interpretation have plagued it
since its inception (see e.g. Hamilton, 1994) and some have argued
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My most sincere thanks and gratitude go to Sean Holly for his help, support, and
patience throughout the writing of this paper, which was part of the author’s
Ph.D. Thesis at the University of Cambridge. Thanks also go to M. Hashem Pesaran,
Hal White, Richard J. Smith, George Kapetanios, Rod McCrorie, Cheng Hsiao, two
anonymous referees, and to seminar participants at the University of Cambridge
and the University of St. Andrews. This paper is dedicated to the memory of
Halbert L.White, Jr. He is profoundlymissed. Financial support of the Yousef Jameel
scholarship is gratefully acknowledged.
∗ Tel.: +34 93 542 2682.

E-mail address:majid.alsadoon@gmail.com.
1 Excellent surveys can be found in Geweke (1984), Hamilton (1994), and
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that it may fail to capture what is actually meant by causality (see
Hoover, 2001 or Pearl, 2009). Against this backdrop, the purpose
of this paper is to demonstrate that GC is a much deeper concept
than previously thought, going to the heart ofmany other concepts
in time series analysis. This is done without taking any particular
stance on the philosophical or empirical applicability of GC per se.
Suffice it to say that GC remains an important element of causal
analysis in a dynamic setting and that it does capture structural
causality under certain conditions (White and Lu, 2010; White
et al., 2010; White and Pettenuzzo, 2011; White et al., 2012).
In such instances it makes sense to use causal language such as
‘‘cause’’ and ‘‘effect’’ in referring to variables associated by GC and
wewill on occasion do so in this paperwith the understanding that
those conditions are met.

This paper proposes two extensions to Dufour and Renault
(1998) (DR): (i) it takes into account the subspaces of GC and (ii) it
considers long run GC. To motivate the first extension, suppose
that X and Y are multivariate processes and Y Granger-causes X .
Now itmay be that variations in X along some directions cannot be
attributed to Y . Likewise, itmay be that certain linear combinations
of Y do not help predict X . Thus standard multivariate GNC
tests may not give the full picture of the dependence structure.
To motivate the second extension, frequency-domain results
are available for checking long run GNC (Hosoya, 1991, 2001).
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There are also time-domain results for cointegrated VAR models
(Granger and Lin, 1995; Bruneau and Jondeau, 1999; Yamamoto
and Kurozumi, 2006). It would be useful to obtain time-domain
criteria for long run GNC for a wider class of processes.

Based on the aforementioned extensions, it is shown that:
(i) L2-mean-reversion, a weaker form of weak dependence than
ρ-mixing, is an instance of long run GNC, (ii) cointegration is a spe-
cial case of long run GNC along a subspace, (iii) controllability is a
special case of subspace GC and Kalman’s controllability decompo-
sition is a partial converse of a result byDR, and finally (iv) linear ra-
tional expectations entail (possibly testable) GNC restriction along
subspaces. Additionally, the paper presents extensions of various
results by DR to subspace GNC in linear L2 processes, including
VARMA.

Now GC has been known to be associated with cointegration,
controllability, and rational expectations equilibria for quite some
time now. However these links have been established in rather re-
strictive contexts and do not span the full extents of the relation-
ships. In particular, the association with cointegration was known
to hold only in the context of bivariate models (Granger, 1988b),
whereas we shall see that cointegration is a particular form of long
run subspace GNC in any multivariate L2 process. The association
with controllability, on the other hand, was only shown in rather
extreme forms of optimal control, where the policymaker cares
only about a single variable in themodel (Granger, 1988a). Wewill
see that controllability in its most general form (see e.g. Kailath,
1980) is a particular instance of subspace GC. Finally, the asso-
ciation with rational expectations has been explored by Hansen
and Sargent (1980) although in the highly specialized context of
stochastic linear–quadratic control. They find that GC determines
which variables ought to enter into the decision rule. In contrast,
the result of this paper, which applies to a larger class of linear ra-
tional expectationsmodel and any variable therein (whether or not
it is a decision rule), is that the forward component of a rational ex-
pectations equilibrium lies within a particular subspace of GNC. It
is important to emphasize that none of these results would have
been possible without the two extensions proposed in this paper.
The general theme of this paper, kindly noted by an anonymous
referee, is therefore: ‘‘[Granger] causality is not invariant to linear
projections onto alternative subspaces’’.

In addition to the above literature, various papers have consid-
ered time series dependence along subspaces. Velu et al. (1986)
consider the problem of finding the subspaces along which a sta-
tionary VAR is forecastable. Otter (1990) considers the problem of
finding the subspace of future variables predictable by past vari-
ables. Related to this work is Brillinger (2001), who considers the
problem of approximating a time series X by a filter of Y where
the filter is of reduced rank and both series are stationary. There
are also a number of papers that have recently built on DR. Eich-
ler (2007) uses DR’s results to conduct a graph-theoretic analysis
in light of recent advances in the artificial intelligence literature on
causality (Pearl, 2009). Hill (2007) develops DR’s results into a pro-
cedure for finding the exact horizon at which fluctuations in one
variable anticipate changes in another variable when the model is
trivariate. Dufour and Taamouti (2010) develop measures of GC at
finite horizons.

The paper proceeds as follows. Section 2 reviews some Hilbert
space theory and sets the notation. Section 3 develops the main
concepts of subspace and long run GNC as extensions to DR. Sec-
tion 4 considers long run GNC in more detail. Section 5 specializes
the theory to linear invertible processes. Section 6 specializes fur-
ther to invertible VARMA processes. Section 7 considers the con-
nection to controllability. Section 8 considers the connection to
linear rational expectations equilibria. Section 9 concludes and the
last section is an Appendix.

2. Review of Hilbert space theory and notation2

Throughout this paper, we work with a single probability space
(Σ, F , P) with E as the expectation operator. We define L2 to be
the Hilbert space of random variables with finite secondmoments.
The inner product is defined as ⟨X, Y ⟩ = E(XY ) for all X, Y ∈ L2
(we reserve ∥ · ∥ for the Euclidean vector norm and the norm it
induces on matrices). We abuse notation by considering a random
vector to be in L2 if all its elements are in L2. For a σ -algebra
X ⊆ F , we take L2(X ) to be the space of X -measurable random
variables in L2.

IfH and G are subspaces of L2 then defineH+G = sp{H,G}, the
closure of the span of all linear combinations of the elements of G
and H .3 We set H −G = H ∩G⊥, the part of H orthogonal to G. This
subspace is closed whenever H is closed and is defined even when
G ∩ H = {0}, in which case H − G = H .

The time indexing set will be (ω, ∞) ⊆ Z with ω ∈ {−∞} ∪ Z
for all processes in this paper. The information or history at time
t > ω is denoted by I(t), a closed subspace of L2 satisfying I(t) ⊆

I(t ′)wheneverω < t ≤ t ′. I = {I(t) : t > ω} is an information set.
If X is an n-dimensional stochastic process in L2 then forω ≤ t < t ′
define, X(t, t ′] = sp{Xis : t < s ≤ t ′, 1 ≤ i ≤ n}. X[t, t ′) is
defined in similar fashion for ω < t ≤ t ′ and so is X[t, t ′]. The
information set I is said to be conformable with X if X(ω, t] ⊆ I(t)
for all t > ω. The most frequently encountered information sets
in this paper take the form, I(t) = H + X(ω, t] for all t > ω
for some L2 random vector process X , where H ⊆ L2 is a closed
subspace. When I(t) = H for all t > ω we will refer to I as H . The
remote information set of X is defined as


t>ω X(ω, t]. We will

also require XT ⊆ F , the σ -algebra generated by {X(t) : t ∈ T },
where T is a subset of the time indexing set (ω, ∞).

If H is a closed subspace of L2 then the orthogonal projection
of X ∈ L2 onto H (or the best linear predictor of X given H)
is denoted by P(X |H). If X is a vector of n variables in L2 then
P(X |H) = (P(X1|H), . . . , P(Xn|H))′.

3. Cartesian and subspace Granger causality

First, we consider the basic idea behind subspace and long run
GC as an extension to Cartesian GC. This study is conducted within
a large class of time series processes, namely L2 processes.

We take the following to be our most basic assumption.

Assumption 1. Let ω, ϖ ∈ {−∞} ∪ Z and ω ≤ ϖ . X = {X(t) :

ω < t < ∞} and Y = {Y (t) : ω < t < ∞} are L2 processes,
of finite dimensions nX and nY respectively. We also take I to be
an information set. Here ω specifies the start of the process and ϖ
specifies the start of the prediction period. �

Wewill be interested in studying the predictability ofX in terms
of Y in the context of information set I . Because prediction some-
times requires initial conditions to be specified, this predictability
is assessed over a range of periods (ϖ, ∞), whichmay be a proper
subset of the time indexing set, (ω, ∞).4 Typically, I is assumed to
include all the variables that may help predict X , including X and

2 Excellent overviews of the applications of Hilbert space theory to time series
analysis can be found in Brockwell and Davis (1991) and Pourahmadi (2001). This
paper closely follows the notation of DR.
3 The statistical literature uses ‘‘+’’ to refer to the linear span. However, DR use

‘‘+’’ to signify the closed linear span and we follow their notation. The two are not
equivalent as demonstrated in Example 9.6 of Pourahmadi (2001).
4 DR and Al-Sadoon (2009b) did not make this distinction clear. They derive their

general L2 results for the case ω = ϖ but when discussing linear invertible models
they allow for ω < ϖ . This then begs the question of whether their general L2
results continue to hold for linear invertible processes with initial conditions.
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