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a b s t r a c t

In this paper a new Bayesian approach is proposed to test a point null hypothesis based on the deviance
in a decision-theoretical framework. The proposed test statistic may be regarded as the Bayesian version
of the likelihood ratio test and appeals in practical applications with three desirable properties. First, it is
immune to Jeffreys’ concern about the use of improper priors. Second, it avoids Jeffreys–Lindley’s paradox,
Third, it is easy to compute and its threshold value is easily derived, facilitating the implementation in
practice. The method is illustrated using some real examples in economics and finance. It is found that
the leverage effect is insignificant in an exchange time series and that the Fama–French three-factormodel
is rejected.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hypothesis testing plays a fundamental role in making statis-
tical inference about the model specification. After models are es-
timated, empirical researchers would often like to test a relevant
hypothesis to look for evidence to support or to be against a par-
ticular theory. An important class of hypotheses involve a single
parameter value in the null.

In this paper we are concerned about testing a single point
hypothesis under Bayesian paradigm. So far Bayes factor (BF) is
the dominant statistic for Bayesian hypothesis testing (Kass and
Raftery, 1995; Geweke, 2007). The wide range of applicability of
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BF comes with no surprise. BF computes the posterior odds of the
null hypothesis and hence provides a general and intuitive way to
evaluate the evidence in favor of the null hypothesis.

In the meantime, unfortunately, BF also suffers from several
theoretical and practical difficulties. First, when improper prior
distributions are used, BF contains undefined constants and takes
arbitrary values. This is known as Jeffreys’ concern (Kass and
Raftery, 1995). Second, when a proper but vague prior distribution
with a large spread is used to represent prior ignorance, BF tends
to favor the null hypothesis. The problem may persist even when
the sample size is large. This is known as Jeffreys–Lindley’s paradox
(Kass and Raftery, 1995; Poirier, 1995). Third, the calculation of BF
generally requires the evaluation of marginal likelihoods. In many
models, the marginal likelihoods may be difficult to compute.

Several approaches have been proposed in the literature to deal
with Jeffreys’ concern and Jeffreys–Lindley’s paradox. One simple
approach is to split the data into two parts, one as a training
set, the other for statistical analysis. The non-informative prior is
then updated by the training data, which produces a new proper
informative prior distribution for computing BF. This idea is shared
by the fractional BF (O’Hagan, 1995), and the intrinsic BF (Berger,
1985). In many practical situations, unfortunately, it is not clear

0304-4076/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jeconom.2013.08.035

http://dx.doi.org/10.1016/j.jeconom.2013.08.035
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2013.08.035&domain=pdf
mailto:yujun@smu.edu.sg
http://www.mysmu.edu/faculty/yujun/
http://www.mysmu.edu/faculty/yujun/
http://www.mysmu.edu/faculty/yujun/
http://www.mysmu.edu/faculty/yujun/
http://www.mysmu.edu/faculty/yujun/
http://www.mysmu.edu/faculty/yujun/
http://dx.doi.org/10.1016/j.jeconom.2013.08.035


Y. Li et al. / Journal of Econometrics 178 (2014) 602–612 603

how to split the sample. Moreover, the sample split may have
a major impact on statistical inference. Without a need to split
the sample, several Bayesian hypothesis testing approaches have
been proposed based on the decision theory. Noting that the BF
approach to Bayesian hypothesis testing is a decision problemwith
a simple zero–one loss function, Bernardo and Rueda (2002) (BR
hereafter) and Li and Yu (2012) (LY hereafter) suggested extending
the zero–one loss function into continuous loss functions, resulting
in Bayesian test statistics that is well defined under improper
priors.

The test statistics of BR and LY relies on threshold values. While
in theory these threshold values may be calibrated from simulated
data generated from the null hypothesis, in practice they are
computationally expensive to obtain. FollowingMcCulloch (1989),
LY proposed to choose the threshold values based on the Bernoulli
distribution. Although this choice makes the determination of
threshold values convenient, there are obvious drawbacks. Not
only is the choice of the Bernoulli distribution arbitrary, but also
are the threshold values independent of the data and the candidate
models.Moreover, it is not clear if the test statistic of LY can resolve
Jeffreys–Lindley’s paradox.

The main purpose of this paper is to develop a new Bayesian
hypothesis testing approach for the point null hypothesis testing.
The test statistic is based on the Bayesian deviance and constructed
in a decision theoretical framework. It can be regarded as the
Bayesian version of the likelihood ratio test. We show that the
statistic appeals in four aspects. First, it does not suffer from
Jeffreys’ concern and, hence, can be used under improper priors.
Second, it does not suffer from Jeffreys–Lindley’s paradox and,
hence, can be used under vague priors. Third, it is easy to compute.
Finally, the threshold values can be easily determined and are
dependent on the data as well as the candidate models.

The paper is organized as follows. Section 2 reviews the
Bayesian literature on testing the point null hypothesis from the
viewpoint of decision theory. Section 3 develops the new Bayesian
test statistic and establishes its properties. Section 4 illustrates
the new method by using three real examples in economics and
finance. Section 5 concludes the paper. Appendix collects the proof
of theoretical results.

2. Point null hypothesis testing: a literature review

2.1. The setup

Denote y = (y1, y2, . . . , yn)′ the vector of observables. Denote
p(y|ϑ) the likelihood function of the observed data. Denote π(ϑ)
the prior distribution and p(ϑ|y) the posterior. Suppose that
researchers may wish to test a hypothesis, the simplest of which
contains only a point which may correspond to the prediction of
a theory (Robert, 2001). Denote θ ∈ 2, whose dimension is p,
the parameters of interest, and ψ ∈ 9, whose dimension is q,
the nuisance parameters. So ϑ = (θ,ψ)′ ∈ 2 × 9. Assume that
the observed data, y ∈ Y, is described a probabilistic model M ≡

{p(y|θ,ψ)}. The point null hypothesis is:
H0 : θ = θ0
H1 : θ ≠ θ0.

(1)

From the viewpoint of decision theory, the hypothesis testing
may be viewed as a decision problem where the action space has
two elements, i.e., to accept H0 (name it d0) or to reject H0 (name
it d1). Denote the null model M0 ≡ {p(y|θ0,ψ),ψ ∈ 9}, and
M1 ≡ M . Suppose a loss is incurred as a function of the actual value
of theparameters (θ,ψ)whenone acceptsH0 or rejectsH0. Assume
the loss function is given by {L[di, (θ,ψ)], i = 0, 1}. Naturally,

one would like to reject H0 when the expected posterior loss of
accepting H0 is sufficiently larger than the expected posterior loss
of rejecting H0, i.e.,

T(y, θ0) =


Θ


Ψ

△L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ > C,

where C is a threshold value, △L[H0, (θ,ψ)] = L[d0, (θ,ψ)] −

L[d1, (θ,ψ)] is the net loss functionwhich can be used tomeasure
the evidence against H0 as a function of (θ,ψ).

2.2. Bayes factors and the discrete loss function

BF employs the zero–one loss function. In particular, if

△L[H0, (θ,ψ)] =


−1 if θ = θ0
1 if θ ≠ θ0,

we can get

T(y, θ0) =


Ψ

(−1)
p(y|θ0,ψ)p(ψ|θ0)p(θ0)

p(y)
dψ

+


Θ


Ψ

1
p(y|θ,ψ)p(ψ|θ)p(θ)

p(y)
dθdψ,

where p(y) =

p(y,ϑ)dϑ is themarginal likelihood. In general, to

represent a prior ignorance, an equal probability 0.5 is assigned to
H0 and toH1. A reasonable prior for θwith a discrete support at θ0 is
formulated as p(θ) = 0.5 when θ = θ0 and p(θ) = 0.5π(θ) when
θ ≠ θ0, where π(θ) is a prior distribution. Hence, when C = 0, the
decision criterion is given by:

Reject H0 iff −


Ψ

p(y|θ0,ψ)p(ψ|θ0)dψ

+


Θ


Ψ

p(y|θ,ψ)p(ψ|θ)π(θ)dθdψ > 0

which is equivalent to

Reject H0 iff BF01 =


Ψ
p(y|θ0,ψ)p(ψ|θ0)dψ

Θ


Ψ
p(y|θ,ψ)p(ψ|θ)π(θ)dθdψ

< 1,

where BF01 is the well-known BF (Kass and Raftery, 1995) and is
the ratio of two marginal likelihood values.

When a subjective prior is not available, an objective prior or
default prior may be used. Often, π(θ) is taken as non-informative
priors, such as the Jeffreys or the reference prior (Jeffreys, 1961;
Bernardo and Rueda, 2002). These non-informative priors are
generally improper, and it follows that π(θ) = C0f (θ), where f (θ)
is a nonintegrable function, and C0 is an arbitrary positive constant.
In this case, the BF is

BF01 =


Ψ
p(y|θ0,ψ)p(ψ|θ0)dψ

C0


Θ


Ψ
p(y|θ,ψ)p(ψ|θ)f (θ)dθdψ

.

Clearly, the BF is not well defined since it depends on the arbitrary
constant C0, giving rise to Jeffreys’ concern. In addition, if a proper
prior is used but has a large variance, the likelihood function
may take low values under the alternative hypothesis. This often
leads to a smaller marginal likelihood value for the alternative
model. Consequently, BF has a tendency to favor H0, giving rise to
Jeffreys–Lindley’s paradox; see Poirier (1995) and Robert (2001).

The formulation of BF generally requires a positive probability
for θ = θ0 to be assigned. When θ is continuous, the prior concen-
trates a positive probability mass on the single point θ0. As pointed
out by BR, Jeffreys–Lindley’s paradox is the consequence of using
this non-regular prior structure.
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