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a b s t r a c t

We consider the empirical likelihood method for estimation of distribution and quantile functions where
side information is incorporated through moment conditions. We systematically study the asymptotic
properties of the estimators, such as the uniform strong laws of large numbers and weak convergence
over classes of functions. TwoMonte Carlo examples are also given to illustrate the practical utility of the
method.
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1. Introduction

Empirical likelihood (EL) can be traced all the way back to
Thomas and Grunkemeier (1975), but Owen (1988, 1990, 1991,
2001) formally established it as a nonparametric analogue of para-
metric likelihood, providing an effective way for interval estima-
tion and goodness-of-fit test with appealing data-driven and range
respecting features. DiCiccio et al. (1991) and Chen and Cui (2007)
further showed that EL is generally Bartlett correctable and thus
leads to more accurate inferential procedures than some other
commonly used ones such as the bootstrap. The EL method has
been extended and applied in many fields in statistics and econo-
metrics such as estimating equations (Qin, 1993; Qin and Lawless,
1994), quantile and density estimation (Chen and Hall, 1993; Hall
and Presnell, 1999; Chen, 1997; Zhang, 1997, 1998), generalized
linear model (Kolaczyk, 1994), survival analysis (Murphy and van
der Vaart, 1997; Adimari, 1997), nonparametric regression (Qin
and Tsao, 2005), goodness-of-fit measure (Baggerly, 1998), infer-
ence in the presence of nuisance parameters (Lazar and Mykland,
1999), marginal and conditional likelihood (Qin and Zhang, 2005),
finite population inference (Chen and Qin, 1993; Chen and Wu,
2002), specification tests (Kitamura, 2001; Kitamura et al., 2004),
generalizedmethods ofmoments (Imbens, 2002), local polynomial
fitting (Zhang and Liu, 2003), and dual likelihood (Bravo, 2004).
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In many situations of practical interest, there usually exists
some side information about the otherwise unknown distribution
of the sample. This information may come from preliminary stud-
ies or be directly implied by an assumed theoretical model. For ex-
ample, we might know that the distribution function is symmetric
around a constant which can either be specified or unknown. Intu-
itively, the side information ‘‘symmetry’’ should be utilized when
it comes to estimate the distribution function. An attractive feature
of the EL method is that it can effectively incorporate such infor-
mation through the moment functions. For the problemwhere the
information about distribution function F and a parametric vector
θ associatedwith F are available in the form of some unbiased esti-
mating functions, Qin and Lawless (1994) formally established the
asymptotic normality of the EL estimators of F and θ .When the side
information does not involve an unknown parameter vector, Chen
and Qin (1993) and Zhang (1997) proposed the EL-based estimator
of the quantile function and established its large sample properties.

In this paper, we systematically study the asymptotic proper-
ties of the EL-based estimators of distribution and quantile func-
tions in the presence of side information which may involve an
unknown parameter vector. For the EL-based estimator of the dis-
tribution function, we establish the uniform strong laws of large
numbers and weak convergence, over classes of functions, i.e. the
P-Glivenko–Cantelli and P-Donsker classes respectively. The latter
allows us to construct nonparametric confidence bands for the dis-
tribution function and its related functionals. The EL-based estima-
tor of the quantile function is obtained by direct inversion and the
asymptotic results parallel to those of the distribution function are
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established. Two Monte Carlo examples are also given to illustrate
that for distribution and quantile functions, the estimation accu-
racy can generally be improved by incorporating the side informa-
tion. The rest of the paper is organized as follows. In Section 2, we
study the EL-based estimation of the distribution function, in the
presence of side information. Under the same setting, we consider
the EL-based quantile estimation in Section 3. Section 4 provides
two Monte Carlo examples to illustrate the results. All the techni-
cal proofs are relegated to the Appendix.

2. The EL-based estimation of the distribution function

Let X1, . . . , Xn be d-dimensional independent and identically
distributed random vectors with an unknown distribution func-
tion F and a parameter θ associated with F which takes values
in a compact parameter space Θ ⊆ Rq. Denote the true values
of F and θ by F0 and θ0 respectively. As in Qin and Lawless
(1994), suppose that the side information involves an unknown
parameter vector θ and can be summarized in the form of r ≥ q
unbiased moment functions gj(x, θ), j = 1, 2, . . . , r , such that
Eg(X, θ0) = 0, where the expectation is for the distribution of
X at the true parameter θ0 when no confusion appears, and
g(X, θ) = (g1(X, θ), g2(X, θ), . . . , gr(X, θ))T . Let w1, w2, . . . , wn
be non-negative empirical weights allocated to the observations.
The EL incorporating the side information as proposed in Qin and
Lawless (1994) is L(θ) =

n
i=1 wi(θ) which maximizes

n
i=1

wi subject to wi ≥ 0,
n

i=1

wi = 1, and

n
i=1

wig(Xi, θ) = 0;

which are given by

wi(θ) =
1
n

1
1 + tTn (θ)g(Xi, θ)

,

and tn(θ) = (tn,1(θ), . . . , tn,r(θ))T are solutions of
n

i=1

g(Xi, θ)

1 + tTn (θ)g(Xi, θ)
= 0.

Write Ω = E[g(X1, θ0)g(X1, θ0)
T
], L = E[∂g(X1, θ0)/∂θ ], and

A(x) = E[g(X1, θ0)I(X1 ≤ x)]. Let I(·) be the indicator function.
Without any side information, distribution function can be effi-
ciently estimated by the empirical distribution function Fn(x) =n

i=1 I(Xi ≤ x)/n, where the inequality is meant component-
wise. The asymptotic variance of

√
n(Fn(x) − F0(x)) is σ 2(x) =

F0(x)(1−F0(x)).When θ0 is known, the EL estimator of distribution
function is defined as

F̂n(x) =

n
i=1

wi(θ0)I(Xi ≤ x),

with the associated EL process
√
n(F̂n(·) − F0(·)). When θ0 is un-

known, it can be estimated by the maximum empirical likelihood
estimate θ̃n = argmax L(θ). The corresponding EL estimator of dis-
tribution function and the associated EL process are then

F̃n(x) =

n
i=1

wi(θ̃n)I(Xi ≤ x) and

√
n(F̃n(·) − F0(·)), respectively.

It is natural to estimate F0 by F̃n or F̂n since the wis are the weights
that the EL distributionplaces on the observationsXis. As notedby a
referee, alternatively, for any given x, write τ = F(x)(τ0 = F0(x) is

the true value) and use the EL method to estimate π = (τ , θ). The
moment functions for π arem(X, π) = (I(X ≤ x) − τ , g(X, θ)T )T .
It is easy to see that the maximum empirical likelihood estimate
of π is (F̃n(x), θ̃n) when θ0 is unknown. As shown in Qin and
Lawless (1994), the asymptotic variance of

√
n(F̃n(x) − F0(x)) is

σ̃ 2(x) = F0(x)(1 − F0(x)) − A(x)T (Ω−1
− U)A(x), where U is

given in Theorem 1. When θ0 is known, L = 0 and the asymp-
totic variance of

√
n(F̂n(x) − F0(x)) reduces to σ̂ 2(x) = F0(x)(1 −

F0(x)) − A(x)TΩ−1A(x). The asymptotic variances are equal to the
efficiency bounds for τ , as derived for the general GMM case by
Chamberlain (1987) and thus F̃n and F̂n are semiparametrically ef-
ficient. This shows that the weights wi(θ̃n) and wi(θ0) are optimal
although they are both of order 1/n(1 + op(1)) the same as those
of the NPMLE. When A(x) ≠ 0, σ̂ 2(x) < σ 2(x) and this indicates
that there is always an efficiency gain in incorporating the side in-
formationwhen θ0 is known.When θ0 is unknown, however, there
could be no efficiency gain for some x. As illustrated in the first ex-
ample of Section 4, when the side information is ‘‘symmetry’’ and
the underlying distribution is the Laplace distribution, there is no
efficiency gain in estimating F0(θ0) where θ0 is the unknown sym-
metry center.

Below we introduce some notations before the statements of
our results. Let µ be a dominating measure for F0 (For example
we may take µ be the Lebesgue measure λ if F0 is continuous,
the counting measure C if F0 is discrete, or µ = λ|A + C |Ac if F0
is continuous on A and discrete on Ac). For ease of exposition we
assume F0 is on R1, the case F0 being on Rd (d > 1) is similar. Let
f = dF/dµ be the Radon–Nikodym derivative of F0 with respect to
µ, and

f̃n(x) =
F̃n(x + cn) − F̃n(x − cn)

2cn
,

f̂n(x) =
F̂n(x + cn) − F̂n(x − cn)

2cn
,

with cn → 0, ncn → ∞. Define fn(x) accordingly using Fn(x). Note
that f̃n(·), f̂n(·) and fn(·) are proper densities for each n. Now let P̃n,
P̂n and Pn be the corresponding (random) probability measures
for f̃n(·), f̂n(·) and fn(·). We will establish contiguity among these
probability measures.

Let P̃n, P̂n, Pn and P be the (random) probability measures in-
duced by F̃n, F̂n, Fn and F0 respectively. For a function h : Rd

→ R,
define P̃nh =

n
i=1 wi(θ̃n)h(Xi), Ph = Eh(X1), G̃nh =

√
n(P̃nh −

Ph) =
√
n(
n

i=1 wi(θ̃n)h(Xi)−Eh(X1)), andGnh =
√
n(Pnh−Ph) =

√
n(
n

i=1 n
−1h(Xi) − Eh(X1)). For any given h satisfying some reg-

ularity condition, it can be shown that P̃nh → Ph (a.s.) and G̃nh
D

→

N(0, σ̃ 2
h ), where σ̃ 2

h = Ph2
− (Ph)2 − P(gT

0 h)(Ω
−1

− U)P(g0h)

and g0(x) = g(x, θ0). By contrast, Gnh
D

→ N(0, σ 2
h ) with σ 2

h =

Ph2
−(Ph)2. Hencewhen it comes to estimate Ph, incorporating the

side information g reduces the asymptotic variance by the amount
P(gT

0 h)(Ω
−1

− U)P(g0h). For a given space H , let l∞(H) be the
set of functions z on H with suph∈ |z(h)| < ∞. We aim to estab-
lish the uniform strong laws of large numbers and weak conver-
gence of empirical likelihood process as random elements indexed
by a class of functions H , in the space l∞(H), which may not be
measurable. Accordingly, the resultant convergence results are in
the sense of the outer measure P∗ of P (van der Vaart and Well-
ner, 1996; hereafter VW). When H is measurable, the results are
automatically in the sense of the measure P itself. For any proba-
bility measure Q , let ∥Q∥H = sup{|Qh| : h ∈ H}. Define for any
vector k = (k1, . . . , kd) of d integers and a function h : X → R,
Dkh(x) = ∂ |k|h(x)/(∂xk11 · · · ∂xkdd ), where X is a subset of Rd and
|k| = k1 + · · · + kd. Let
∥h∥s = max

|k|≤s
sup
x∈X

|Dkh(x)| + max
|k|=s

sup
x,y∈X

|Dkh(x) − Dkh(y)|
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