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a b s t r a c t

Modeling conditional distributions in time series has attracted increasing attention in economics and
finance.Wedevelop a new class of generalized Cramer–vonMises (GCM) specification tests for time series
conditional distributionmodels using a novel approach,which embeds the empirical distribution function
in a spectral framework. Our tests check a large number of lags and are therefore expected to be powerful
against neglected dynamics at higher order lags, which is particularly useful for non-Markovian processes.
Despite using a large number of lags, our tests do not suffer much from loss of a large number of degrees
of freedom, because our approach naturally downweights higher order lags, which is consistent with the
stylized fact that economic or financial markets are more affected by recent past events than by remote
past events. Unlike the existing methods in the literature, the proposed GCM tests cover both univariate
and multivariate conditional distribution models in a unified framework. They exploit the information
in the joint conditional distribution of underlying economic processes. Moreover, a class of easy-to-
interpret diagnostic procedures are supplemented to gauge possible sources of model misspecifications.
Distinct from conventional CMandKolmogorov–Smirnov (KS) tests, which are also based on the empirical
distribution function, our GCM test statistics follow a convenient asymptotic N(0, 1) distribution and
enjoy the appealing ‘‘nuisance parameter free’’ property that parameter estimation uncertainty has no
impact on the asymptotic distribution of the test statistics. Simulation studies show that the tests provide
reliable inference for sample sizes often encountered in economics and finance.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of conditional distributions in time series has
been advancing rapidly, with a wide range of applications in
economics and finance (e.g. Granger, 1999; Corradi and Swanson,
2006b). Enormous empirical evidences document that economic
and financial variables are typically nonlinear and nonnormally
distributed, and have asymmetric comovements.1 Consequently,
one has to go beyond the conditional mean and conditional
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1 Empirical evidences against normality can be dated back to Mills (1927) and

continue through today, see, e.g., Ang and Chen (2002), Bollerslev (1986), Longin
and Solnik (2001).

variance to obtain a complete picture for the dynamics of time
series of interest. The conditional distribution characterizes the
full dynamics of economic variables. As pointed out by Granger
(2003), the knowledge of the conditional distribution is essential
in performing various economic policy evaluations, financial
forecasts, derivative pricing and risk management.2

In economics and econometrics, effort has been devoted to
using higher moments and the entire distribution. Rothschild and
Stiglitz’s (1971, 1972) seminal works have demonstrated that the
risk or uncertainty should be characterized by the distribution
function, rather than the first two moments. In particular, the

2 A prominent example is in the option pricing context, where the price is
determined by not just the conditional mean and variance, but functions of
conditional distribution. Another example is to calculate value-at-risk (VaR), where
the key step is to accurately estimate the conditional distribution of asset returns
and the preassumed normal distribution can significantly underestimate the
downward risk.
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ranking of the cumulative distribution function (CDF) by certain
rules always coincides with that of the risk-averter’s preference,3
while the mean–variance analysis is only applicable to the
restricted family of utility functions or distribution functions.
Granger (1999), in a model evaluation context, suggests that
the predictive conditional distribution should be provided, since
forecasts based on conditional means are optimal only for a very
limited class of loss functions.4

In time series analysis, the most popular models are ARMA
models for conditional mean and GARCH models for conditional
variance. However, as Hansen (1994) points out ‘‘there is no reason
to assume, in general, that the only features of the conditional
distribution which depend upon the conditional information are
the mean and variance’’. Although still in an early stage, some
time series models have been developed to study skewness,
kurtosis and even the entire distribution. Hansen (1994) develops
a general model for autoregressive conditional density (ARCD),
which allows for time-varying first four conditional moments via
a generalized skewed t-distribution. Harvey and Siddique (1999)
propose a generalized autoregressive conditional skewness model
(GARCHS) in a conditional non-central t-distribution framework
by explicitly modeling the conditional second and third moments
jointly. Brooks et al. (2005) develop a generalized autoregressive
conditional heteroscedasticity and kurtosis (GARCHK) model via
a central t distribution with time-varying degrees of freedom.
Other examples of distribution models include Engle and Russell’s
(1998, 2005) autoregressive conditional duration (ACD) and
autoregressive conditional multinomial (ACM) models, Bowsher’s
(2007) vector conditional intensitymodel, Hamilton’s (1989, 1990)
Markov regime switching models and Geweke and Amisano’s
(2007) compound Markov mixture models.

In addition to the univariate time series distribution modeling,
the recent literature has documented a rapid growth of multivari-
ate conditional distribution models, due to an increasing need to
capture the joint dynamics of multivariate processes, such as in
macroeconomic control, pricing, hedging and risk management.5
For example, CAPM studies the relationship between individual as-
set returns and the market return, which has motivated the devel-
opment of multivariate GARCHmodels (e.g., Bollerslev et al., 1988,
Engle, 2002b). Among multivariate distribution models, copula-
based models have become increasingly popular in characterizing
the comovement between markets, risk factors and other relevant
variables (e.g., Patton, 2004,Hu, 2006, Lee and Long, 2009). Another
example is the extension of Markov regime switching models to a
multivariate framework (e.g., Clements and Krolzig, 2003, Chauvet
andHamilton, 2006).Markov regime switchingmodels can capture
the asymmetry, nonlinearity and persistence of extreme observa-
tions of time series.

Efficient parameter estimation, optimal distribution forecast,
valid hypothesis testing and economic interpretation all require
correct model specification. The work on testing distributional
assumptions at least dates back to the Kolmogorov–Smirnov
(KS) test. One undesired feature of this test is that it is not
distribution free when parameters are estimated. Andrews (1997)
extends the KS test to conditional distribution models for
independent observations, where a bootstrap procedure is used
to obtain critical values. Meanwhile, Zheng (2000) proposes a
nonparametric test for conditional distribution functions based
on the Kullback–Leibler information criterion and the kernel
estimation of the underlying distributions. Fan et al. (2006) extend
Zheng’s (2000) test to allow for discrete dependent variables

3 A closely related concept is second-order stochastic dominance, which ranks
any pair of distributions with the same mean in terms of comparative risk.
4 See also Christoffersen and Diebold (1997) for more discussion.
5 Geweke and Amisano (2007) argue that ‘‘while univariate models are a first

step, there is an urgent need to move on to multivariate modeling of the time-
varying distribution of asset returns’’.

and for mixed discrete and continuous conditional variables.
However, a limitation of the above tests is that the data must
be independently and identically distributed, therefore ruling out
time series applications especiallywhen the underlying time series
is non-Markovian.

Observing the fact that when a dynamic distribution model is
correctly specified, the probability integral transform of observed
data via the model-implied conditional density is i.i.d. U[0, 1],
Bai (2003) proposes a KS type test with Khmaladze’s (1981)
martingale transformation, whose asymptotic distribution is free
of impact of parameter estimation. However, Bai’s (2003) test only
checks uniformity rather than the joint i.i.d. U[0, 1] hypothesis.
It will have no asymptotic unit power if the transformed data
is uniform but not i.i.d. Moreover, in a multivariate context, the
probability integral transform of data with respect to a model-
implied multivariate conditional density is no longer i.i.d. U[0, 1],
even if the model is correctly specified. Bai and Chen (2008)
evaluate themarginal distribution of both independent and serially
dependent multivariate data by using the probability integral
transform for each individual component. This test is legitimate,
but itmaymiss important information on the joint distribution of a
multivariatemodel. In particular, when applied to each component
of multivariate time series data, Bai and Chen’s (2008) test may
fail to detect misspecification in the joint dynamics. For example,
the test may easily overlook misspecification in the conditional
correlations between individual time series.

Corradi and Swanson (2006a) propose bootstrap conditional
distribution tests in the presence of dynamic misspecifications.
However, they consider a finite dimensional information set and
thus may not have good power against non-Markovian models.
Their tests are designed for univariate time series. When extended
to multivariate time series, their tests are not consistent against
all alternatives to the null. Moreover, their critical values are data
dependent and cannot be tabulated. Bierens and Wang (2012)
propose a weighted integrated conditional moment (ICM) test of
the validity of parametric specifications of conditional distribution
models for stationary time series, extending Bierens’ (1984) test.
Their ICM test is consistent against all stationary alternatives,
but its asymptotic distribution is case dependent and a bootstrap
method has to be applied to obtain critical values, which is
computationally intensive.

In a continuous-time diffusion framework, Ait-Sahalia et al.
(2009) and Li and Tkacz (2006) propose tests by comparing
the model-implied distribution function with its nonparametric
counterpart. Both tests maintain the Markov assumption for
the DGP, and only check one lag dependence, therefore are
not suitable for non-Markovian models like GARCH or MA type
models. Another undesired feature of these tests is that they
have severe size distortion in finite samples and bootstrap must
be used to approximate the distribution of the test statistics.
Bhardwaj et al. (2008) consider a simulation-based test,which is an
extension of Andrews’ (1997) conditional KS test, for multivariate
diffusionmodels. The limit distribution of their test is not nuisance
parameter free and asymptotic critical valuesmust be obtained via
a block bootstrap.

In this paper, we shall propose a new class of generalized
Cramer–von Mises (GCM) tests of the adequacy of univariate and
multivariate conditional distribution models, without requiring
prior knowledge of possible alternatives (including both functional
forms and lag structures). Compared with the existing tests for
conditional distribution models in the literature, our approach has
several main advantages.

First, our GCM tests are constructed using a new approach,
which embeds the empirical distribution function in a spectral
framework. Thus it can detect misspecification in both marginal
distribution and dynamics of a time series. Thanks to the use
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