
Journal of Econometrics 178 (2014) 45–56

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Nonparametric inference for counterfactual means: Bias-correction,
confidence sets, and weak IV
Yanqin Fan a,∗, Sang Soo Park b

a Department of Economics, University of Washington, Box 353330, Seattle, WA 98195, United States
b Department of Economics, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea

a r t i c l e i n f o

Article history:
Available online 12 August 2013

JEL classification:
C14
C15
C19

Keywords:
Average treatment effect
Counterfactual mean outcome
Kernel estimation
Partial identification

a b s t r a c t

This paper supplements Manski (1990) and Manski and Pepper (2000) and contributes to the literature
by introducing the concept of weak IV for the partially identified mean counterfactual outcomes when an
instrumental variable (IV) or a monotone instrumental variable (MIV) is available (IV or MIV assumption
respectively); developing asymptotically uniformly valid confidence sets for the counterfactual mean
outcomes and average treatment effects under the assumptions; correcting biases of estimates of bounds
on the counterfactual mean outcomes under the assumptions. We apply the confidence sets to further
examining the effect of family intactness on a child’s high school graduation originally studied in Manski
et al. (1992).
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1. Introduction

For bounded outcomes, Manski (1989) established sharp
bounds on the counterfactual mean outcomes and average treat-
ment effects (ATEs) known as the worst-case bounds. These
bounds can be tightened when an instrumental variable (IV) is
available, see Manski (1990), or when a monotone instrumental
variable (MIV) is available, seeManski and Pepper (2000). As noted
in Manski (1990) and Manski and Pepper (2000), in contrast to in-
ference for the counterfactual means and ATEs based on theworst-
case bounds, inference on the counterfactual mean outcomes and
ATEs based on IV and MIV bounds poses technical challenges be-
cause of their sup / inf structure; see alsoManski (2003). This paper
supplements Manski (1990) and Manski and Pepper (2000) by in-
troducing bias-correction and inference toolswhen an IV or anMIV
is available.1 In addition, we introduce the concept of weak IV and
explore implications of weak IV on the estimation and inference
for partially identified mean counterfactual outcomes.

The issue of constructing confidence sets (CSs) for the coun-
terfactual mean outcomes and ATEs belongs to the recently fast
growing area of inference for partially identified parameters. Much
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(S. Park).
1 The first draft of this paper was completed independently of and concurrently

with related work by Chernozhukov et al. (2013).

attention has been devoted to CSs for parameters defined by a fi-
nite number of moment inequalities; see e.g., Imbens and Manski
(2004), Bugni (2010), Canay (2010), Chernozhukov et al. (2007),
Galichon and Henry (2009), Romano and Shaikh (2008), Stoye
(2009), Rosen (2008), Beresteanu and Molinari (2009), Andrews
andGuggenberger (2009), Andrews and Soares (2010), and Fan and
Park (2010). CSs in these works can be modified to obtain CSs for
the counterfactual mean outcomes and ATEs when the IV or MIV
is discrete taking a finite number of values. The modifications are
entailed by the presence of nonparametric regression functions in
the corresponding moment inequalities.

To construct CSs for the case of a continuous IV/MIV, we first
characterize the identified interval for the counterfactual mean
outcomes in terms of a continuum of conditional moment inequal-
ities and then construct CSs for the counterfactual mean outcomes
byusing an integral-type criterion function. For continuous IV/MIV,
our paper is related to Chernozhukov et al. (2013), Kim (2009),
and Andrews and Shi (2010).2 The set-up in Chernozhukov et al.
(2013) is the same as that of this paper. Their CSs differ from ours
and are applicable to the case without additional covariates be-
sides IV/MIV. The difference between our approach and that of
Chernozhukov et al. (2013) is similar to the difference between
integrated conditional moment (ICM) tests (see e.g., Bierens and
Ploberger, 1997, Stute, 1997) and smoothing-based model speci-
fication tests (see e.g., Hardle and Mammen, 1993, Fan, 1994, Fan

2 All these papers are independently and concurrently done.
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and Li, 1996).3 Kim (2009) and Andrews and Shi (2010) developed
asymptotically uniformly valid CSs for parameters defined by con-
ditional moment inequalities. When applied to our set-up, their
CSs are applicable to the case without covariates besides IV/MIV.

As noted in Manski and Pepper (2000), the simple plug-in esti-
mators of the IV and MIV bounds tend to have upward/downward
bias in finite samples; see also Haile and Tamer (2003) and Krieder
and Pepper (2007). For a binary IV/MIV, we introduce analytically
bias-corrected estimators of the bounds and show that their first
order asymptotic biases approach zero. For a general IV/MIV, ana-
lytical bias-correction is more tedious. Instead, we introduce novel
simulation bias-corrected estimators of the bounds.4

An interesting finding of this paper is the role of the strength
of the IV in the identification and inference procedures for the
counterfactual mean outcomes. Motivated by the observation that
even when the IV bounds are tighter than the worst-case bounds
of Manski (1989), the two sets of bounds may be very close to
each other, we introduce the concepts of very weak, weak, and
strong IVs for partially identified mean counterfactual outcomes
in Definition 2.1 in Section 2. The strength of the IV is measured by
the difference between the worst-case bounds and the IV bounds.
We explore implications of the presence of a weak or very weak
IV on various CSs for the mean counterfactual outcomes and the
asymptotic bias of the plug-in estimators of the IV bounds. For a
binary IV, we show analytically that when the IV is very weak or
weak, the plug-in estimators of the IV bounds have non-negligible
first order asymptotic bias.

On the empirical side, we follow up the study of Manski et al.
(1992) on the effect of family structure (intact, non-intact) on a
child’s high school graduation (yes, no). Manski et al. (1992) re-
ported the worst-case bounds in their Table 4, categorizing the
parent years of schooling covariate into three groups (<12 years,
12 years, >12 years). Using parents’ schooling as IV, we estimate
IV bounds and apply the CSs introduced in this paper to further
examining the effect of family structure on a child’s high school
graduation. Compared with the worst-case bounds, the IV bounds
are tighter. Based on our CSs, we are unable to reject the null hy-
pothesis that parents’ schooling is an IV.

The rest of this paper is organized as follows. In Section 2, we
review IV and MIV bounds and introduce our concept of weak
IV. In Section 3, we consider the finite IV/MIV case. We construct
asymptotically uniformly valid CSs for the counterfactual mean
outcomes, present a detailed analysis of the asymptotic bias of the
plug-in estimators of the bounds, and develop bias-corrected es-
timators. Section 4 extends results in Section 3 to the continuous
IV/MIV case. Section 5 presents our empirical results and the last
section concludes. Some technical proofs are relegated to the Ap-
pendix.

Throughout this paper, we use H⇒ to denote weak conver-
gence. All limits are taken as the sample size n goes to ∞ unless
stated otherwise.

2. IV/MIV bounds and weak IV

This paper uses the same formal setup asManski (1997),Manski
and Pepper (2000), and Manski (2003). There is a probability
space (J,B, P) of individuals. Each member j of population J has
observable covariate xj ∈ X and a response function yj(·) : T → Y
mapping the mutually exclusive and exhaustive treatments t ∈ T
into outcomes yj(t) ∈ Y. Person j has a realized treatment zj ∈ T
and a realized outcome yj ≡ yj(zj), both of which are observable.

3 Fan and Li (2000) provides a detailed comparison of these two classes of tests.
4 Chernozhukov et al. (2009) constructed a (downward/upward) median

unbiased estimator of the (upper/lower) bounds.

The latent outcomes yj(t), t ≠ zj, are not observable. An empirical
researcher learns the distribution P(x, z, y) of covariates, realizes
treatments, and realizes outcomes by observing a random sample
of the population. The researcher’s problem is to combine this
empirical evidence with assumptions in order to learn about
the distribution P [y (·)] of response functions, or perhaps the
conditional distributions P [y (·) |x]. In this paper, we focus on the
mean counterfactual outcomes conditional on x, E [y(t)|x],5 t ∈ T .
Let [KL, KU ] denote the range of y, where −∞ < KL < KU < +∞.

In this section, we first review the IV andMIV bounds of Manski
(1990) and Manski and Pepper (2000) and then introduce the
concept of a weak IV.

2.1. A review of IV/MIV bounds

Let x = (v,w) and X = V × W , where V ⊂ Rp and W ⊂

Rd. Each value of (v,w) defines an observable subpopulation of
persons. We consider two types of IV assumptions: the familiar
mean-independence form of IV assumption and the monotone
instrumental variable form of IV assumption introduced in Manski
and Pepper (2000).

IV Assumption: Covariate v is an IV in the sense of mean-
independence if, for each t ∈ T , each value of w, and all


u, u′


∈

(V × V),

E

y(t)|v = u′, w


= E [y(t)|v = u, w] .

MIV Assumption: Covariate v is an MIV in the sense of mean-
monotonicity if, for each t ∈ T , each value of w, and all


u, u′


∈

(V × V) such that u′
≥ u,

E

y(t)|v = u′, w


≥ E [y(t)|v = u, w] .

Manski (1990, 1994) provide sharp bounds on E [y(t)|w] under
the IV assumption and Manski and Pepper (2000) provide sharp
bounds on E [y(t)|v,w] under the MIV assumption. The following
lemma is adapted from Proposition 2.4 in Manski (2003).

Lemma 2.1. Let the IV assumption hold. Then for each t ∈ T , w ∈

W , we have

sup
u∈V

E [y(t)I {z = t} + KLI {z ≠ t} |v = u, w] ≤ E [y(t)|w]

≤ inf
u∈V

E [y(t)I {z = t} + KU I {z ≠ t} |v = u, w] .

In the absence of other information, this bound is sharp.

It is interesting to note that when E [y(t)|w] is point-identified,
the availability of an IV v according to the above IV assumption
does not help identification and traditionally has been regarded
as an ‘irrelevant’ or ‘excluded’ variable. Comparing the above IV
boundswith theworst-case bounds on E [y(t)|w] inManski (1989)

E [y(t)I {z = t} + KLI {z ≠ t} |w]

≤ E [y(t)|w] ≤ E [y (t) I {z = t} + KU I {z ≠ t} |w] ; (1)

however, we observe that when E [y(t)|w] is not point-identified,
the IV has identifying power in the sense that the bounds in
Lemma 2.1 are tighter than the worst-case bounds in (1), unless
for each l = L,U, E ({y(t)I {z = t} + KlI {z ≠ t}} |v = u, w) does
not depend on u.

The following lemma is from Manski and Pepper (2000); see
also Manski (2003).

5 Since we do not consider unconditional mean counterfactual outcomes, we
will simply refer to the conditional mean counterfactual outcomes as mean
counterfactual outcomes in this paper.
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