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Based on the well known Karhunen-Loéve expansion, it can be shown that many omnibus tests lack
power against “high frequency” alternatives. The smooth tests of Neyman (1937) may be employed
to circumvent this power deficiency problem. Yet, such tests may be difficult to compute in many
applications. In this paper, we propose a more operational approach to constructing smooth tests. This
approach hinges on a Fourier representation of the postulated empirical process with known Fourier
coefficients, and the proposed test is based on the normalized principal components associated with
the covariance matrix of finitely many Fourier coefficients. The proposed test thus needs only standard
principal component analysis that can be carried out using most econometric packages. We establish the
asymptotic properties of the proposed test and consider two data-driven methods for determining the
number of Fourier coefficients in the test statistic. Our simulations show that the proposed tests compare
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favorably with the conventional smooth tests in finite samples.
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1. Introduction

Specification tests are indispensable tools in the process of
model searching. There are basically two types of specification
tests: directional tests and omnibus tests. A directional test fo-
cuses on certain alternatives of interest. While this test is pow-
erful against the postulated alternatives, it is not a consistent test
in general because it may not have power against some other al-
ternatives. On the other hand, when researchers do not have any
particular alternative in mind, they may prefer an omnibus test
that is capable of detecting any potential deviations from the null
hypothesis. There are numerous omnibus tests in the literature,
such as the tests of martingale difference (e.g., Durlauf, 1991; Deo,
2000; Dominguez and Lobato, 2003) and general specification tests
(e.g., Bierens, 1982, 1990; Bierens and Ploberger, 1997).

It can be verified that the limits of many omnibus tests are
a functional of some stochastic (possibly Gaussian) process. By
the well known Karhunen-Loéve (KL) expansion (Karhunen, 1946;
Loéve, 1955), the limiting process in an omnibus test can be
represented as a weighted sum of the products of the normal-
ized principal components and eigenfunctions associated with the
covariance operator, with the weights being the corresponding
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eigenvalues that diminish to zero. This suggests that such om-
nibus tests mainly have local power against a few orthogonal
directions determined by the eigenfunctions with larger eigenval-
ues, but lack power against “high frequency” alternatives, i.e., the
directions related to very small eigenvalues. See, e.g., Eubank and
LaRiccia (1992), Bierens and Ploberger (1997), Janssen (2000), and
Escanciano (2009) for more discussions.

The aforementioned power deficiency may be circumvented by
employing “smooth” tests, in the sense of Neyman (1937); see also
Eubank and LaRiccia (1992), Fan (1996), Ghosh and Bera (2001),
and Escanciano and Mayoral (2010)." By construction, such smooth
tests avoid diminishing weights in the limit and hence have more
even power against a collection of directions. There have been
many smooth tests in the literature, such as the tests of good-
ness of fit (Eubank and LaRiccia, 1992; Delgado and Stute, 2008),
tests of martingale difference (Delgado et al., 2005; Escanciano and
Mayoral, 2010), and general specification tests (Stute, 1997; Escan-
ciano, 2009). A major difficulty of smooth tests is that they may
not be easy to implement, because the statistics rely on the eigen-
pairs (eigenfunctions and corresponding eigenvalues) of the limit-
ing process, which are usually unknown. It is, however, technically
involved to estimate these eigenpairs; see, e.g., William and Seeger

1 Another class of tests based on “kernel smoothing” also has better power
against “high frequency” alternatives, e.g., Fan and Li (1996, 2000) and Fan (1998).
In this paper, by smooth test we mean Neyman'’s smooth test.
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(2000, 2001), Carrasco et al. (2007), and Escanciano (2009). Thus,
smooth tests are not readily available in many applications.

In this paper, we propose a more operational approach to con-
structing smooth tests. This approach hinges on a Fourier repre-
sentation of the postulated empirical process with known Fourier
coefficients. The proposed smooth test is based on the normal-
ized principal components associated with the covariance matrix
of finitely many Fourier coefficients. We thus need only a stan-
dard principal component analysis that can be carried out using
most econometric and statistics packages. This is much simpler
than estimating the eigenpairs of the limiting process. We estab-
lish the asymptotic properties of the proposed test and consider
two data-driven methods for determining the number of Fourier
coefficients in the test statistic. The first method, proposed by In-
glot and Ledwina (2006), employs a model-selection criterion; the
second method, studied in Inglot et al. (1994) and Fan (1996), is
designed to maximize the asymptotic power. Monte Carlo simula-
tions show that the proposed smooth tests compare favorably with
the conventional smooth tests in finite samples.

This paper proceeds as follows. We review the conventional
smooth test and propose a new smooth test in Section 2. The
asymptotic properties of the proposed test and two data-driven
tests are discussed in Section 3. Section 4 reports simulation
results. Section 5 concludes the paper. All technical conditions and
proofs are deferred to Appendix.

2. The proposed smooth test

2.1. The CvM and smooth tests

Many omnibus tests for model specification can be expressed
in terms of a functional of an empirical process. In these tests, the
behavior of the empirical process is essentially governed by its lim-
iting process under the null hypothesis but tends to deviate from
the limiting process otherwise; the chosen functional is then used
to measure these deviations. The well known functionals include
the Kolmogorov-Smirnov (KS) functional, i.e., the supremum func-
tional, and Cramér-von Mises (CvM) functional, i.e., f f2(s)ds fora
square integrable function f.

Let X,, denote a square integrable empirical process on [a, b]
such that X, = X on [a, b], where = denotes weak convergence
(of the associated probability measure) and X is also a square
integrable process with zero mean. An omnibus test based on the
CvM functional (hereafter the CvM test) is such that

b b
/xf(r)dr—d>/ X2(7)dr,

d e .
where — stands for convergence in distribution. The covariance
operator of X, Ky, with the kernel Kx (s, 7) = E[X(s)X(7)], is such
that

b
Kyf(7) = / Kx (s, T)f (s)ds.

Corresponding to Ky, there exist orthonormal eigenfunctions
{em(+)} and the associated eigenvalues {«,} that satisfy

b
/ Kx (s, T)em(s)ds = amen(T),

where oy > ay > - -2

2 The orthonormal eigenfunctions {e,(-)} satisfy f: enm(s)e,(s)ds = 0 and
b 2
J; ek (s)yds = 1.

When X is quadratic mean continuous on [a, b], its KL expansion
is, in the quadratic mean sense,

M
X(1) = lim > zmen(r)
m=1

M— o0
M
= J@w;«ﬁamz;emm, T € [a, b, (1)

where z,, = fba X(s)em(s)ds are the principal components, which
are mutually uncorrelated with variance ap, and z;, = zn//om
are the normalized principal components with variance one. It
is readily seen that (1) is also a Fourier representation in the
eigenfunctions {&,(-)}, with z,, the Fourier coefficients. It follows
from (1) and the Parseval Theorem that, in the quadratic mean
sense, the limit of the CvM test is:

b M M
X2 = li 2 — i )2, 2
/a (r)dt Mgnoon;zm Mgnoor;am(zm) 2)

When Ky is square integrable, o, — 0 as m tends to infinity.?
Therefore, the CvM test based on X, virtually has no local
power against “high frequency” alternatives, i.e., the directions
corresponding to very small eigenvalues (i.e., o, with large m).
To alleviate the power deficiency in the CvM test, it is natu-
ral to construct a test whose limit does not involve the dimin-
ishing weights «y,. To this end, consider the process Zy (1) =

> M | z:en(r) and note that

b M

| g = . 3)
a m=1

cf. (2). Letting Z;  be consistent estimates of z;, based on the

sample of size n, we may construct the following test: for a given M,

M
Tow =Y (o) 4)
m=1

It is clear that the limit of T,y is (3). This is a smooth test in the
sense of Neyman (1937); see also Ghosh and Bera (2001) for a re-
view of Neyman's smooth test. When X is a Gaussian process, it is
well known that z,,, are independent Gaussian random variables so
that z, are ii.d. # (0, 1). In this case, (3) has a x2(M) distribution.

Compared with the CvM test with the limit (2), the smooth
test T, » ought to have more even power against the directions
corresponding to the first M principal components. For the
remaining directions corresponding to other components (z;, with
m > M), T, v would have no power. Yet, the power loss may
be minimal because the CvM test itself has little power against
these directions, due to the presence of the diminishing weights
am. On the other hand, T; ), cannot be easily implemented unless
the eigenpairs of the covariance operator Ky, hence the normalized
principal components z;;, are known. Unfortunately, except for
some special X processes, such as the standard Wiener process
and Brownian bridge, the eigenpairs are unknown and need to be
estimated. Estimating the eigenpairs of the covariance operator is,
however, technically involved; see, e.g., William and Seeger (2000,
2001), Carrasco et al. (2007), and Escanciano (2009). Therefore,
constructing smooth tests may not be as straightforward as one
would think.

3 By square integrability of Ky,

b b b o) 00
f f K2 (s, t)dtds:/ (Za;sfn(s)> ds="ap < oo,
a Ja a m=1 m=1

where the first equality follows from the Parseval’s theorem. It follows that «;, — 0
asm — oo. It can also be shown that o, — 0 when Ky is integrable.
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