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a b s t r a c t

This paper develops univariate seasonal unit root tests based on spectral regression estimators. An
advantage of the frequency domain approach is that it enables serial correlation to be treated non-
parametrically. We demonstrate that our proposed statistics have pivotal limiting distributions under
both the null and near seasonally integrated alternatives when we allow for weak dependence in the
driving shocks. This is in contrast to the popular seasonal unit root tests of, among others, Hylleberg
et al. (1990) which treat serial correlation parametrically via lag augmentation of the test regression. Our
analysis allows for (possibly infinite order) moving average behaviour in the shocks. The size and power
properties of our proposed frequency domain regression-based tests are explored and compared for the
case of quarterly data with those of the tests of Hylleberg et al. (1990) in simulation experiments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers testing for seasonal unit roots in a
univariate time-series process. In the seminal paper in the litera-
ture, Hylleberg et al. (1990) [HEGY] develop separate regression-
based t- and F-tests for unit roots at the zero, Nyquist and
annual (harmonic) frequencies in the context of quarterly data. Re-
cently, Smith et al. (2009) have generalised this approach to allow
for an arbitrary seasonal aspect, while Rodrigues and Taylor (2007)
develop near-efficient versions of the HEGY tests. Other impor-
tant extensions of the basic HEGY approach appear in, inter alia,
Ghysels et al. (1994), who allow for joint testing across different
frequencies, Smith and Taylor (1998), who extend the range of de-
terministic specifications allowed in HEGY and provide limiting
null distributions for the original HEGY statistics, and Rodrigues
and Taylor (2004) who develop expressions for the asymptotic lo-
cal power of the HEGY tests.
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These HEGY-type tests are all characterised by the use of
parametric lag augmentation, along the lines of the augmented
Dickey–Fuller [ADF] test, to allow for weak dependence in the
shocks. Focusing on the casewhere the shocks follow a finite-order
autoregressive process of order p [AR(p)], Burridge and Taylor
(2001) and Smith et al. (2009) show that such lag augmentation can
provide only a partial solution with the limiting null distributions
of certain of the harmonic frequency unit root tests still depending,
in general, on the parameters of the AR(p) polynomial with the
consequence that not all of the HEGY-type tests can be reliably
used in practice.

It has been known since the seminal work of Box and Jenkins
(1976) that seasonally observed time series tend to display
significant moving average behaviour. Indeed Box and Jenkins
(1976) developed the well-known seasonal ARIMA factorisations,
the best known example of which being the so-called airlinemodel.
ARMA behaviour can also be a manifestation of neglected periodic
autoregressive (PAR) behaviour (see, for example, Ghysels and
Osborn, 2001, Chapter 6). As an example, the first-order stationary
PAR process for a series observedwith period S, admits a stationary
and invertible ARMA representationwith anMA(S−1) component.
It is therefore important that any seasonal unit root test can allow
for moving average behaviour. Recently, del Barrio Castro et al.
(2012) have demonstrated that the results of Burridge and Taylor
(2001) and Smith et al. (2009) carry over to the case where the
shocks admit a stationary and invertible ARMA representation,
provided the lag augmentation length increases at any appropriate
rate with the sample size, analogous to the results obtained for the
ADF test by Said and Dickey (1984).
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Motivated by these issues, the purpose of this paper is to
develop a new class of regression-based seasonal unit root tests,
which are asymptotically valid in the presence of general weak
dependence. Our analysis explicitly allows for the presence of
ARMA shocks which need not be invertible but must satisfy the
weaker condition that they do not admit spectral zeros at either
the zero or seasonal frequencies. We do so by the use of frequency
domain regression [FDR] based test statistics.We consider a variety
of possible forms for the deterministic component, proposing
tests based on both ordinary least squares [OLS] and quasi-
difference [QD] de-trending. We demonstrate that the limiting
distributions of all of the resultingHEGY-type t- and F-statistics are
pivotal under both the null hypothesis and under near-integrated
alternatives, attaining the limiting distributions achieved by their
standardHEGY counterpartswhen the shocks are independent and
identically distributed [IID].

Frequency domain analysis has a long history in econometrics,
with Granger and Hatanaka (1964) providing an early demonstra-
tion of its relevance in the analysis of economic data. Furthermore
Granger (1966) observed that many economic time series have
considerable power at low frequencies, giving rise to a spectral
density that is peaked at the origin andwhich declines as frequency
increases; he described this as the typical spectral shape of an eco-
nomic variable, and the peak at the origin would nowadays be
associatedwith the variable being integrated of order one. In a sea-
sonal setting these peaks occur at the seasonal frequencies, and our
approach is based on a seasonal extension of the unit root tests of
Choi and Phillips (1993)which utilise the efficient FDR estimator of
Hannan (1963). The main advantage of the FDR approach from our
perspective is that, unlike the HEGY approach, it delivers estima-
tors of the parameters corresponding to the seasonal roots whose
limiting distributions are free from nuisance parameters, even in
the presence of moving average disturbances.

The FDR effectively transforms serial correlation in the distur-
bances into a form of heteroskedasticity across frequencies that is
captured by the spectral density function; the resulting estimators
handle this heteroskedasticity byweighting the periodogram ordi-
nates by the inverse of the estimated spectral density. In our im-
plementation of the frequency domain estimator we consider two
types of spectral density estimator. The first is a simple weighted
periodogram estimator [WPE] that averages a set of periodogram
values at frequencies either side of the frequency of interest while
the second uses the Berk (1974) autoregressive spectral density es-
timator [ASDE] derived from an autoregressive approximation to
the series of interest. Our use of the ASDE is novel in the sense that
we use the autoregressive approximation to obtain an estimator of
the spectral density across all frequencies. This contrasts with its
usual use in unit root testing where it is computed at the fixed fre-
quency of the root being tested; see, e.g., Ng and Perron (1995) for
the zero frequency root and Rodrigues and Taylor (2007) for the
seasonal frequencies.

The paper is organised as follows. Section 2 outlines the
seasonal framework, defines the hypotheses of interest, and
briefly reviews the HEGY tests. In Section 3 we introduce
our FDR implementations of the HEGY statistics and provide
representations for their limiting distributions under both the
null and local alternatives, showing these to be pivotal in the
presence of weak dependence. An investigation into the relative
finite sample performances of the FDR tests and the augmented
HEGY tests is provided in Section 4. Section 5 concludes. Proofs are
contained in Appendices A and B.

2. The seasonal unit root framework

2.1. The seasonal model

Themodelwe consider for the scalar randomvariableXt is given
by

Xt = Yt + µt , t = 1 − S, . . . , T , (2.1a)
aS(L)Yt = Ut , t = 1, . . . , T (2.1b)

where aS(z) := 1 −
S

j=1 ajz
j, S denotes the number of seasons,

L denotes the lag operator, and the deterministic component µt
satisfies

µt :=

S
j=1

δjDjt + ρt, t = 1 − S, . . . , T , (2.2)

where Djt is a seasonal dummy variable such that for j =

1, . . . , S,Djt = 1 (t = j mod S) andDjt = 0 otherwise.We assume
that the randomdisturbanceUt in (2.1b) is amean-zero covariance
stationary (linear) process satisfying the following conditions:

Assumption 1. The random disturbance Ut in (2.1b) admits the
moving average representationUt = ψ(L)Vt where Vt is IID(0, σ 2)
with finite fourth moments and where the lag polynomial ψ(z)
:= 1 +


∞

i=1 ψiz i satisfies: (i) ψ(exp{±i2πk/S}) ≠ 0, k =

0, . . . , ⌊S/2⌋, where ⌊·⌋ denotes the integer part of its argument
and where i :=

√
−1, and (ii)


∞

j=1 j|ψj| < ∞.

Remark 1. Assumption 1 ensures that the spectral density func-
tion of Ut is bounded, and that it is strictly positive at both
the zero and seasonal spectral frequencies, ωk := 2πk/S, k =

0, . . . , ⌊S/2⌋.

The model depicted in (2.1)–(2.2) is sufficiently general to
enable Xt to be defined in terms of an arbitrary seasonal frequency
S and to capture a variety of seasonal intercept and trend effects
in the deterministic component µt := γ ′dt . We shall consider
the following five specifications for the deterministic component
in which the stated restrictions on δj and ρ hold for j = 1, . . . , S:

Scheme 1. No intercept, no trend: δj = ρ = 0.
Scheme 2. Intercept, no trend: δj = δ, ρ = 0; γ := δ, dt := 1.
Scheme 3. Seasonal intercepts, no trend: δj unrestricted, ρ =

0; γ := (δ1, . . . , δS)
′, dt := (D1t , . . . ,DSt)

′.
Scheme 4. Intercept, trend: δj = δ, ρ unrestricted γ := (δ, ρ)′,

dt := (1, t)′.
Scheme 5. Seasonal intercepts, trend: δj, ρ unrestricted; γ :=

(δ1, . . . , δS, ρ)
′, dt := (D1t , . . . ,DSt , t)′.

Smith et al. (2009) also consider the further scheme of seasonal
intercepts and seasonal trends,

µt :=

S
j=1

δjDjt +

S
j=1

ρjDjt t, t = 1 − S, . . . , T , (2.3)

with δj and ρj unrestricted. Here γ := (δ1, . . . , δS, ρ1, . . . , ρS)
′,

dt := (D1t , . . . ,DSt ,D1t t, . . . ,DSt t)′. We will not explicitly cover
this case in what follows (as its empirical relevance is limited)
but we will mention how our results carry over to this scheme at
appropriate points.

In order to simplify our presentation, the initial conditions,
Y1−S, . . . , Y0, in (2.1b) are taken to be of op(T 1/2), such that they
are asymptotically negligible; cf. Elliott et al. (1996) and Rodrigues
and Taylor (2007). Weakening this assumption to allow the initial
conditions to be of Op(T 1/2) will not alter the null distributions
of the tests we outline in this paper provided these are based on
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