[Journal of Econometrics 178 \(2014\) 310–315](http://dx.doi.org/10.1016/j.jeconom.2013.08.029)

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/jeconom)

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

An asymptotic invariance property of the common trends under linear transformations of the data^{\star}

Søren Johansen^{[a,](#page-0-1)[b,](#page-0-2)}*, K[a](#page-0-1)tarina Juselius ^a

^a *Department of Economics, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark* ^b *CREATES, Denmark*

a r t i c l e i n f o

Article history: Available online 5 September 2013

JEL classification: C32

Keywords: Cointegration vectors Common trends Prediction errors

a b s t r a c t

It is well known that if X_t is a nonstationary process and Y_t is a linear function of X_t , then cointegration of Y_t implies cointegration of X_t . We want to find an analogous result for common trends if X_t is generated by a finite order VAR with i.i.d.(0, Ω*x*) errors ε*xt* . We first show that *Y^t* has an infinite order VAR representation in terms of its white noise prediction errors, ε*yt* , which are a linear process in ε*xt* , the prediction error for X_t . We then apply this result to show that the limit of the common trends for Y_t generated by ε_{yt} , are linear functions of the common trends for *X^t* , generated by ε*xt* . We illustrate the findings with a small analysis of the term structure of interest rates.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and motivation

It is well known that if X_t is a *p*-dimensional $I(1)$ process and if the *m*-dimensional linear transformation $Y_t = a'X_t$, $m < p$, is cointegrated, that is, $\beta'_y Y_t$ is stationary for some $\beta_y \neq 0$, then X_t is ϵ cointegrated with cointegration vector $a\beta_y$, because $\beta'_ya'X_t = \beta'_yY_t$ is stationary. Thus cointegration in the small system, *Y^t* , implies cointegration in the large system, *X^t* , but not necessarily the other way.

We want to investigate if a similar result holds for common trends. We discuss this in the context of an *I*(1) cointegrated vector autoregressive process *X^t* , generated by

$$
\Delta X_t = \alpha_x \beta_x' X_{t-1} + \sum_{i=1}^k \Gamma_{xi} \Delta X_{t-i} + \varepsilon_{xt}, \qquad (1)
$$

where ε_{xt} is i.i.d. (0, Ω_x) and α_x and β_x are $p \times r$. For *I*(1) processes the solution of [\(1\)](#page-0-4) is given by the Granger representation

$$
X_t = C_x \sum_{i=1}^t \varepsilon_{xi} + \sum_{n=0}^\infty C_{xn}^* \varepsilon_{xt-n} + A_x, \tag{2}
$$

E-mail addresses: Soren.Johansen@econ.ku.dk (S. Johansen),

Katarina.Juselius@econ.ku.dk (K. Juselius).

see [Johansen](#page--1-0) [\(1996,](#page--1-0) Theorem 4.2). The common trends are $\alpha'_{\mathfrak{z}}$ $\sum_{i=1}^{t} \varepsilon_{xi}$, where $(\alpha_{x\perp}, \alpha_x)$ is a full rank matrix and $\alpha'_x \alpha_{x\perp} = 0$. This formulation covers the case $r = p$, where $C_x = 0$ so that X_t is stationary, and $r = 0$, where C_x has full rank, so that X_t is not cointegrating.

The \overline{m} -dimensional $Y_t = a'X_t$ has a vector moving average (VMA) representation in terms of the *p*-dimensional i.i.d. sequence ε*xt*,

$$
Y_t = a' C_x \sum_{i=1}^t \varepsilon_{xi} + \sum_{n=0}^\infty a' C_{xn}^* \varepsilon_{xt-n} + a' A_x.
$$
 (3)

We define the \mathcal{L}_2 space $\mathcal{L}_{2t}^{\mathsf{X}} = \mathcal{L}_2(\beta_{\mathsf{x}}^{\prime} X_t, \Delta X_s, s \leq t)$ spanned by { $\beta'_x X_t$, ΔX_s , *s* ≤ *t*} and the linear projection \mathcal{P}_{t-1}^{χ} onto $\mathcal{L}_{2,t-1}^{\chi}$. Then $\mathcal{P}_{t-1}^{\chi}(\Delta X_t) = \alpha_{\chi} \beta_{\chi}' X_{t-1} + \sum_{i=1}^{k} \Gamma_{\chi_i} \Delta X_{t-i}$ and the prediction error of ΔX_t with respect to $\mathcal{L}_{2,t-1}^x$ is $\varepsilon_{xt} = \Delta X_t - \mathcal{P}_{t-1}^x(\Delta X_t)$. Similarly we define the prediction error of ΔY_t with respect to $\mathcal{L}_{2,t-1}^y$ as $\varepsilon_{yt} = \Delta Y_t - \mathcal{P}_{t-1}^y(\Delta Y_t).$

If *Y^t* were a finite order CVAR, with *m*-dimensional prediction errors $\varepsilon_{yt} = \Delta Y_t - \mathcal{P}_{t-1}^y(\Delta Y_t)$, we would find the corresponding Granger representation

$$
Y_t = C_y \sum_{i=1}^t \varepsilon_{yi} + \sum_{n=0}^{\infty} C_{yn}^* \varepsilon_{yt-n} + A_y,
$$
\n(4)

and it is tempting to conclude that the nonstationary part of the two representations [\(3\)](#page-0-5) and [\(4\)](#page-0-6) should be the same

$$
a'C_x\sum_{i=1}^t \varepsilon_{xi} = C_y\sum_{i=1}^t \varepsilon_{yi}, \qquad (5)
$$

 \overrightarrow{a} We would like to thank the referee for a careful reading and for many useful comments. The first author wants to thank Søren Tolver Jensen for very helpful discussions on prediction theory and CREATES — Center for Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research Foundation.

[∗] Corresponding author at: Department of Economics, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark.

^{0304-4076/\$ –} see front matter © 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.jeconom.2013.08.029>

and therefore the common trends, $\alpha'_{y\perp}\sum_{i=1}^{t}\varepsilon_{yi}$, of Y_t based on $\mathcal{L}_{2,t-1}^y$ are a linear function of the common trends, $\alpha'_{x\perp}$ $\sum_{i=1}^t ε_{xi}$, of \ddot{X}_t based on $\mathcal{L}_{2,t-1}^x$.

It turns out that this simple argument is almost correct, but that [\(5\)](#page-0-7) only holds in the sense that the difference is stationary, that is, the two random walk components of Y_t are cointegrated, see [Fig. 2.](#page--1-1) Their difference does not go to zero with *t*, only by normalizing by $T^{-1/2}$ and passing to the limit do we find a relation between the limiting Brownian motions. Note that this does not give any relation between the cyclic components of [\(3\)](#page-0-5) and [\(4\).](#page-0-6)

In general *Y^t* , however, is not a finite order VAR process and therefore the residuals estimated by fitting a finite order VAR do not estimate prediction errors of $\varDelta Y_t$ with respect to $\mathcal{L}_{2,t-1}^y$, moreover one cannot conclude [\(5\)](#page-0-7) from [\(3\)](#page-0-5) and [\(4\).](#page-0-6)

In order to sort this out, we therefore first apply the prediction theory of stationary processes to find an infinite order VAR representation of Y_t in terms of its white noise prediction errors ε_{yt} , and a corresponding VMA representation, or Granger representation of Y_t , in terms of ε_{yt} . Note, however, that ε_{yt} is a white noise and need not be i.i.d. as we have assumed about ε_{xt} . The exception is of course if ε*xt* is i.i.d. Gaussian, then also ε*yt* are i.i.d. Gaussian.

By applying the Functional Limit Theorem to the two cointegrating common trends we can then deduce from [\(3\)](#page-0-5) and [\(4\)](#page-0-6) that there is a linear mapping from the limiting common trends, $\alpha'_{x\perp}W_x(u)$, of the large system onto those of the small system: $\alpha_{y\perp}^{\gamma^{\perp}} W_y(u)$.

We illustrate the ideas and findings in an empirical analysis of monthly US interest rates 1987:1 to 2006:1.

2. The process *X^t*

Let X_t be given by [\(1\)](#page-0-4) and define the generating matrix polynomial of a complex argument *z*:

$$
\Pi_x(z) = (1-z)I_p - \alpha_x \beta'_x z - \sum_{i=1}^k \Gamma_{xi}(1-z)z^i,
$$

and assume that α_x and β_x are $p \times r_x$ of rank $r_x \leq p$.

Under the conditions that the roots of det $\Pi_{x}(z) = 0$ satisfy either $|z| > 1$ or $z = 1$, we define $1 + \delta > 1$ as the absolute value of the smallest root different from 1:

$$
1 + \delta = \min\{|z| : \det(\Pi_x(z)) = 0, z \neq 1\},\tag{6}
$$

and $\varGamma_x = \varGamma_p - \sum_{i=1}^k \varGamma_{xi}$ and assume $\det(\alpha'_{x\perp}\varGamma_x\beta_{x\perp}) \neq 0$ so that X_t is *I*(1) and

$$
C_x = \beta_{x\perp} (\alpha'_{x\perp} \varGamma_x \beta_{x\perp})^{-1} \alpha'_{x\perp}
$$

is well defined. Under these assumptions the polynomial $\Pi_{x}(z)$ can be inverted in the sense that

$$
(1-z)\Pi_x^{-1}(z) = (1-z)\frac{\text{adj}(\Pi_x(z))}{\text{det}(\Pi_x(z))} = C_x + (1-z)C_x^*(z),\tag{7}
$$

and $C_x^*(z)$ are rational functions on $\{z : |z| < 1 + \delta\}$ satisfying $\beta' C_{\chi}^*(1) \alpha = -I_{r_{\chi}}$, see [Johansen](#page--1-2) [\(2009,](#page--1-2) Theorem 3). These results can be translated into the Granger representation [\(2\).](#page-0-8)

3. The process $Y_t = a'X_t$

In general $Y_t = a'X_t$, where *a* is $p \times m$, of rank $m < p$, is not a finite order autoregressive process, but if β_{ν} are the cointegrating relations for *Y^t* , the processes

$$
U_{1t} = \beta'_{y} Y_{t} = \beta'_{y} a' \sum_{n=0}^{\infty} C_{xn}^{*} \varepsilon_{xt-n},
$$
\n(8)

$$
U_{2t} = \beta'_{y\perp} \Delta Y_t = \beta'_{y\perp} a' \left(C_x \varepsilon_{xt} + \sum_{n=0}^{\infty} C_{xn}^* \Delta \varepsilon_{xt-n} \right), \qquad (9)
$$

of dimensions r_v and $m - r_v$ respectively are stationary linear processes in the *p*-dimensional prediction errors ε*xt*. We define the $m \times p$ matrix function

$$
\Phi(z) = \begin{pmatrix} \beta'_y a' C_x^*(z) \\ \beta'_{y\perp} a' (C_x + (1-z) C_x^*(z)) \end{pmatrix},
$$
\n(10)

and note that $\Phi(L)\varepsilon_{xt} = U_t = (U'_{1t}, U'_{2t})'$, so that the spectral density of *U^t* is

$$
\phi_u(\lambda) = \frac{1}{2\pi} \Phi(e^{i\lambda}) \Omega_x \Phi'(e^{-i\lambda}).
$$

We first show that U_t is an invertible linear process in its prediction errors $\varepsilon_{ut} = U_t - \mathcal{P}_{t-1}^u(U_t)$, where $\mathcal{P}_{t-1}^u(U_t)$ is the linear projection onto $\mathcal{L}_2^u = \mathcal{L}_2(U_s, s < t)$.

Lemma 1. *The rational function* $\Phi(z)$ *is of rank m for* $|z| < 1 + \delta$, *see* [\(6\)](#page-1-0)*. It follows that there exists an m* × *m* function $A(z) = \sum_{n=0}^{\infty}$ $A_n z^n$ of full rank for $|z| < 1+\delta$ with real exponentially decreasing co*efficients,* $A_0 = I_m$, and an $m \times m$ positive definite symmetric matrix Ω*u, so that the spectral density for U^t has the representation*

$$
\phi_u(\lambda) = \frac{1}{2\pi} A(e^{i\lambda}) \Omega_u A'(e^{-i\lambda}). \tag{11}
$$

Moreover, we find the prediction error decomposition (VMA)

$$
U_t = \sum_{n=0}^{\infty} A_n \varepsilon_{ut-n},\tag{12}
$$

in terms of the white noise $\varepsilon_{ut} = U_t - \mathcal{P}_{t-1}^u(U_t)$ *, which inverted gives the infinite order VAR representation of U^t :*

$$
\varepsilon_{ut} = \sum_{n=0}^{\infty} B_n U_{t-n}.
$$
\n(13)

Here the prediction error ε_{ut} *is a white noise process with Var*(ε_{ut}) = Ω_u , $A_0 = I_m$, and $A = \sum_{n=0}^{\infty} A_n$ has full rank. The function $B(z) = \sum_{n=0}^{\infty} B_n z^n = A(z)^{-1}$ is defined for $|z| < 1 + \delta$ with exponentially *decreasing coefficients,* $B_0 = I_m$ *, and* $B = \sum_{n=0}^{\infty} B_n = A^{-1}$.

Proof. To prove that $rank(\Phi(z)) = m$ for $|z| < 1 + \delta$, we assume we have z_0 with $|z_0| < 1 + \delta$, and $rank(\Phi(z_0)) < m$. Then we can find $v = (v'_1, v'_2)' \in \mathbb{R}_m$ so that

$$
v_1' \beta_y' a' C_x^* (z_0) + v_2' \beta_{y\perp}' a' (C_x + (1 - z_0) C_x^* (z_0)) = 0.
$$
 (14)

We show that $v = 0$.

Case 1: If $z_0 = 1$, we multiply [\(14\)](#page-1-1) by α_x from the right and find $v'_1 \beta'_y a' C^*_x(1) \alpha_x = 0$ because $C_x \alpha_x = 0$. Because $a \beta_y$ are cointegrating relations for X_t we have $a\beta_y = \beta_x \kappa_1$ for some matrix κ_1 of rank r_y , and $0 = v'_1 \beta'_y a' C_x^*(1) \alpha_x = v'_1 \kappa'_1 \beta'_x C_x^*(1) \alpha_x = -v'_1 \kappa'_1$ because $\beta'_x C^*_x(1)\alpha_x = -I_{r_x}$, so that $v_1 = 0$ and therefore from [\(14\),](#page-1-1) $v_2' \beta'_{y\perp} a' \hat{C}_x = 0$. But then $a \beta_{y\perp} v_2$ is a cointegrating vector for X_t and $\beta_{y\perp}v_2$ a cointegrating vector for Y_t , which implies that $v_2 = 0$, and hence $v = 0$.

Case 2: If $z_0 \neq 1$, then $(1 - z_0) \neq 0$, and because $\beta'_y a' C_x = 0$ we find

$$
0 = v'\Phi(z_0) = [(1 - z_0)^{-1}v'_1\beta'_y a' + v'_2\beta'_{y\perp} a']
$$

× $[C_x + (1 - z_0)C_x^*(z_0)].$

Now $C_x + (1 - z_0)C_x^*(z_0) = (1 - z_0) \prod_x (z_0)^{-1}$ has full rank because $\det(\Pi_x(z_0)) \neq 0$, and therefore

$$
(1-z_0)^{-1}v'_1\beta'_y a' + v'_2\beta'_{y\perp} a' = 0.
$$

But $\beta'_y a'$ and $\beta'_{y\perp} a'$ are linearly independent which implies that $v_1 = 0$ and $v_2 = 0$.

This proves that $v = 0$, and $rank(\Phi(z)) = m$ for $|z| < 1 + \delta$.

Download English Version:

<https://daneshyari.com/en/article/5096227>

Download Persian Version:

<https://daneshyari.com/article/5096227>

[Daneshyari.com](https://daneshyari.com)