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a b s t r a c t

We introduce a new class of models that has both stochastic volatility and moving average errors, where
the conditional mean has a state space representation. Having a moving average component, however,
means that the errors in the measurement equation are no longer serially independent, and estimation
becomes more difficult. We develop a posterior simulator that builds upon recent advances in precision-
based algorithms for estimating these new models. In an empirical application involving US inflation we
find that these moving average stochastic volatility models provide better in-sample fitness and out-of-
sample forecast performance than the standard variants with only stochastic volatility.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the pioneering works of Box and Jenkins, autoregres-
sive moving average (ARMA) models have become standard
tools for modeling and forecasting time series. The theoretical
justification of these ARMA models, as is well-known, is the
Wold decomposition theorem, which states that any zero mean
covariance-stationary time series has an infinite moving average
representation. One implication is that any such process can be
approximated arbitrarily well by a sufficiently high order ARMA
model. In practice, it is found that simple univariate ARMAmodels
often outperform complex multivariate models in forecasting.

However, despite the theoretical justification and empirical
success of this class of models, a voluminous literature has high-
lighted the importance of allowing for time-varying volatility in
macroeconomic and financial data for estimation and forecast-
ing. Standard ARMA models that assume constant variance are
seemingly not flexible enough. One way to accommodate this
time-variation in variance is via the GARCH model (Bollerslev,
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1986). For example, Nakatsuma (2000) considers a linear regres-
sion model with ARMA-GARCH errors. Another popular way to al-
low for time-varying volatility is via the stochastic volatility (SV)
model (e.g., Taylor, 1994; Kim et al., 1998). The popularity of this
approach can be seen through the numerous extensions of the ba-
sic SV setup in recent years, such as the SV models with jump and
Student’s t error (Chib et al., 2002), SVwith leverage (Jacquier et al.,
2004; Omori et al., 2007), SV with asymmetric, heavy-tailed error
(Nakajima and Omori, 2012), semiparametric SV models via the
Dirichlet process mixture (Jensen and Maheu, 2010), etc., to name
but a few examples.

Several recent studies have attempted to bridge these two liter-
atures on ARMA and SV models, and have considered various flex-
ible autoregressive models with stochastic volatility (e.g., Cogley
and Sargent, 2005; Primiceri, 2005; Cogley et al., 2010). But there
are few papers that investigate moving average models with SV.
The purpose of this article is to fill this gap: we introduce a class
of models that includes both the moving average and stochastic
volatility components, where the conditional mean process has a
flexible state space representation. As such, the setup includes a
wide variety of popular specifications as special cases, including
the unobserved components and time-varying parameter models.
Of course, any invertible MA process can be approximated by a
sufficiently high order AR model. In practice, however, forecasts
based on these AR models—since they have many parameters to
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estimate—often compare poorly to parsimonious ARMA models
(e.g., Stock and Watson, 2007; Athanasopoulos and Vahid, 2008).
In our empirical work that involves quarterly inflation, we find
that there is substantial support for the proposed models against
their counterparts with only SV. The forecasting results suggest
that addition of the MA component further improves the forecast
performance of standard SV models, particularly at short forecast
horizons.

A second contribution of this paper is to develop an efficient
Markov chain Monte Carlo (MCMC) sampler for estimating this
class of models. Since the conditional mean process has a state
space form, estimation might appear to be straightforward. How-
ever, under our models the errors in the measurement equation
are no longer serially independent due to the presence of the MA
component. As such, application of Kalman filter-based methods
would first require a suitable transformation of the data to make
the errors serially independent. Instead of using the Kalman fil-
ter, we take a different approach: we extend the previous work on
precision-based algorithms for state spacemodels in Chan and Jeli-
azkov (2009) and McCausland et al. (2011), which are shown to be
more efficient than Kalman filter-based methods. The idea of ex-
ploiting banded precision matrices can be traced back to Fahrmeir
and Kaufmann (1991); see also Rue et al. (2009) and Ruiz-Cardenas
et al. (2012). By exploiting the sparse structure of the covariance
matrix of the observations, we develop an easy and fast method
for estimating these new models.

A third contribution involves a substantive empirical applica-
tion on modeling and forecasting US quarterly consumer price in-
dex (CPI) inflation. A vast literature on this topic has emerged
over the last two decades; recent studies include Koop and Pot-
ter (2007), Stock and Watson (2007, 2010), Cogley and Sbordone
(2008), Cogley et al. (2010), Clark and Doh (2011), Korobilis (2013),
Koop and Korobilis (2012), amongmany others. One key finding in
this literature is that both persistence and volatility in the infla-
tion process have changed considerably over time. In particular,
inflation volatility decreased gradually from the great inflation of
the 1970s and throughout the great moderation, until it increased
again and peaked at the aftermath of the global financial crisis.
Empirically, it is often found that models with stochastic volatility
provide substantially better point and density forecasts than those
obtained from constant error variance models (e.g., Clark and Doh,
2011; Chan et al., 2012).

Another key finding in this literature is that for forecasting
inflation, both at short and long horizons, it is often difficult
to improve upon univariate models using only information in
observed inflation (e.g., Stock andWatson, 2007, 2010; Chan et al.,
2012). One reason for this lack of predictive power of a wide
range of seemingly relevant variables—such as unemployment
rate and GDP growth—might be because variables useful for
forecasting change over time (e.g., oil price might be an important
predictor for inflation in the 1970s but is less important in the
2000s) and/or over business cycle (e.g., some variablesmay predict
well in expansions but not in recessions). In fact, Koop and
Korobilis (2012) find evidence that the set of relevant predictors
for inflation does change over time. Given these findings, we
consider univariate time series models using only information in
observed inflation. Additional explanatory variables, of course, can
be incorporated if desired.

We focus on univariate MA-SV models in this paper, partly
because for our empirical work these models are sufficient. We
note that, the univariate framework developed here can be used
to construct multivariate models in a straightforward manner. For
example, in the multivariate SV models of Chib et al. (2006), SV
is induced by a number of latent factors, each of which follows
an independent univariate SV process. In this setup, we can, for
example, replace the SVprocesswith the univariateMA-SVprocess

introduced in this paper to construct a multivariate SVmodel with
autocorrelated errors. We leave the multivariate case for future
research.

The rest of this article is organized as follows. In Section 2 we
introduce the general framework, and discuss how this state space
form includes a variety of popular specifications as special cases.
Section 3 develops an efficient posterior simulator to estimate this
new class of models. Section 4 presents the empirical results for
modeling and forecasting US CPI inflation. In the last section we
conclude our findings and discuss the future research direction.

2. Moving average stochastic volatility models

The general framework we consider is the following q-th-order
moving average model with stochastic volatility:

yt = µt + ε
y
t , (1)

ε
y
t = ut + ψ1ut−1 + · · · + ψqut−q, ut ∼ N (0, eht ), (2)

ht = µh + φh(ht−1 − µh)+ εht , εht ∼ N (0, σ 2
h ), (3)

where we assume that |φh| < 1. The errors ut and εht are
independent of each other for all leads and lags.We further assume
that u0 = u−1 = · · · = u−q+1 = 0. One can, of course, treat these
initial error terms as parameters if desired, and the estimation
procedures discussed in the next section can be easily extended
to allow for this possibility. For typical situations where T ≫ q,
whether these errors are modeled explicitly or not makes little
difference in practice.

Let µ = (µ1, . . . , µT )
′,h = (h1, . . . , hT )

′ and ψ = (ψ1,
. . . , ψq)

′. Then, it is easy to see that the conditional variance of yt
is given by

Var(yt | µ,ψ,h) = eht + ψ2
1 e

ht−1 + · · · + ψ2
q e

ht−q .

In other words, the conditional variance of yt is time-varying
through two channels: it is a moving average of the q + 1 most
recent variances eht , . . . , eht−q , and the log-volatility ht in turn
evolves according to the stationary AR(1) process in (3). Unlike the
standard SVmodels, yt is serially correlated even after conditioning
on the states. In fact, its conditional autocovariances are given by

Cov(yt , yt−j | µ,ψ,h) =


q−j
i=0

ψi+jψieht−i , for j = 1, . . . , q,

0, for j > q,

where ψ0 = 1. It is interesting to note that due to the presence
of the log-volatility ht , the autocovariances of yt are also time-
varying.1

Now, by choosing a suitable conditional mean process µt , the
model in (1)–(3) includes a variety of popular specifications, such
as:

1. the autoregressive model:

µt = φ0 + φ1yt−1 + · · · + φpyt−p;

2. the linear regression model:

µt = β0 + β1x1t + · · · + βkxkt ,

where xt = (x1t , . . . , xkt) is a vector of explanatory variables;
3. the unobserved components model:

µt = τt ,

τt = τt−1 + ετt , ετt ∼ N (0, σ 2
τ );

1 On the other hand, the marginal variance and autocovariances of yt
unconditional on h do not seem to have closed-form expressions.
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