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a b s t r a c t

We introduce tests for finite-sample linear regressions with heteroskedastic errors. The tests are exact,
i.e., they have guaranteed type I error probabilitieswhen bounds are known on the range of the dependent
variable, without any assumptions about the noise structure. We provide upper bounds on probability of
type II errors, and apply the tests to empirical data.
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1. Introduction

The fundamental goal of hypothesis testing, as set by Neyman
and Pearson (1930), is the minimization of both type I and type II
error probabilities. To cite Neyman and Pearson (1930, p. 100): (1)
we must be able to reduce the chance of rejecting a true hypothesis to
as low a value as desired; (2) the test must be so devised that it will
reject the hypothesis tested when it is likely to be false.

In the usual model of linear regressions, how well are these
goals achieved? When error terms are normally distributed and
homoskedastic, the classical test1 has a type I error probability
equal to the nominal level of the test. But error terms in real
data almost never have a precisely normal distribution, let alone a
homoskedastic one. For any given heteroskedastic noise structure,
White (1980)’s robust test guarantees a type I error probability that
approaches the nominal levelwhen the sample size goes to infinity.
But without restrictions on the (unknown) noise structure, and for
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assuming normal and homoskedastic errors.

any sample size, the probability of a type I error resulting from
the use of White (1980)’s test can be as large as 1. In fact, this is
a consequence of a general impossibility result due to Bahadur and
Savage (1956) and Dufour (2003) that shows that no meaningful
test can be constructed in which the probability of a type I error is
guaranteed to be less than 1.

The use of statistical tools in situations where the underlying
distributional assumptions are not satisfied can have catastrophic
consequences. Practitioners can be led to greatly underestimate
the probability of certain outcomes, and remain unprepared to
those outcomes while thinking they are safe. This is what must
have happened to David Viniar, CFO of Goldman Sachs, who de-
clared in August 2007 about the financial crisis: ‘‘We were see-
ing things that were 25-standard deviation moves, several days
in a row’’ (quoted in Larsen, 2007). Since the probability of a 25-
standard deviation event under the normal distribution is less than
1 over 10137, we can safely conclude that the distributional as-
sumptions used by Viniar and his colleagues were not satisfied.

In this paper our message is a positive one. We identify an im-
portant class of statistical problems where the negative conclu-
sions from Bahadur and Savage (1956) and Dufour (2003) do not
apply, and we introduce tests with guaranteed upper bounds on
type I and type II errors for this class of problems. The tests are
exact in the sense that they guarantee a type I error probability
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below the nominal level independently of the error structure.2 We
also implement our these tests in practical numerical examples.

The class of problems we consider is the class in which a bound
on the dependent variable is known. This condition is satisfied in
a large range of applications. For instance, it is warranted by the
very nature of the endogenous variable (e.g., proportions, success
or failure, test scores) in 43 of the 75 papers using linear models
published in 2011 in the American Economic Review. It should be
noted that even under the boundedness condition, the existence of
exact tests was previously an open problem. Previous exact tests
were derived by Schlag (2006, 2008a) for the mean of a random
variable and for the slope of a simple linear regression. Exact
tests for linear regressions under the alternative assumption that
error terms have median zero are developed by Dufour and Hallin
(1993), Boldin et al. (1997), Chernozhukov et al. (2009), Coudin and
Dufour (2009), Dufour and Taamouti (2010).

We refer to our two tests as the nonstandardized and the
Bernoulli tests. We briefly summarize their constructions here.
Each test relies on a linear combination of the dependent variables
(such as in the OLS method) that is an unbiased estimator of the
coefficient to be tested.

The nonstandardized test relies on inequalities due to Cantelli
(1910), Hoeffding (1963), and Bhattacharyya (1987), as well as on
the Berry–Esseen inequality (Berry, 1941; Esseen, 1942; Shevtsova,
2010), to bound the tail probabilities of the unbiased estimator.
One challenge in the construction is to apply the Berry–Esseen in-
equality even though there is no lower bound on the variance of
any of the error terms.

The Bernoulli test generalizes the methodology introduced by
Schlag (2006, 2008b) formean tests. Each term of the linear combi-
nation that constitutes the unbiased estimator is probabilistically
transformed into a Bernoulli random variable. We then design a
test for the mean of the family obtained using Hoeffding (1956)’s
bound on the sum of independent Bernoulli random variables. This
defines a randomized test, onwhichwe then rely to construct a de-
terministic test.

We provide bounds on the probabilities of type II error of our
tests. These bounds can be used to select – depending on the sam-
ple size and the realization of the exogenous variables – which of
our tests ismost appropriate.We also rely on these bounds to show
that these tests have enough power for practical applications.

In two canonical numerical examples involving one covariate
in addition to the constant, the bounds on the probability of type II
errors show that the tests performwell even for small sample sizes
(e.g., n = 40).

We implement our tests and compute confidence intervals us-
ing the empirical data from Duflo et al. (2011).3 We compare the
results relying on our test with the 95/ ones obtained using either
the classical method and White’s heteroskedastic robust method.
The results show that, compared to the classical test orWhite’s test,
the losses of significance of our exactmethod aremoderate, and the
confidence intervals are in most cases augmented by a factor of no
more than 50%.

The paper is organized as follows. Section 2 introduces the
model. Sections 3 and 4 present the nonstandardized test and
the Bernoulli test. In Section 5, we examine their efficiency us-
ing numerical examples. Section 7 shows an application of the
tests to empirical data. The underlying data-generating process is

2 This is the same sense as in e.g. Yates (1934) and Dufour and Torres (2000).
3 The software used to implement the tests is freely downloadable from the

authors’ webpages.

discussed and extensions are discussed in Section 8. We conclude
in Section 9. All proofs are presented in the Appendix.

2. Linear regression

We consider the standard linear regressionmodel with random
regressors, given by

Yi = Xiβ + εi, i = 1, . . . , n (1)

where Xi is the i-th row of a random matrix X ∈ Rn×m of inde-
pendent variables, β ∈ Rm is the vector of unknown coefficients,
and ε ∈ Rn is the random vector of errors. The fixed regressor
case in which X is nonrandom and known ex-ante to the statis-
tician is a special case. We assume (i) strict exogeneity: E (ε|X) = 0
a.s., and (ii) almost surely no multicolinearity: X has rank m with
probability 1. To keep the exposition simple, in most of the paper
we also assume (iii) conditional independence of errors: (εi)i are in-
dependent conditional on X . Finally, we assume (iv) bounded en-
dogenous variable4: there exist ω and ω′ with ω < ω′ such that
P(Yi ∈


ω, ω′


) = 1 for i = 1, . . . , n. In particular, (iv) implies

that Xiβ ∈

ω, ω′


almost surely, and ensures the existence of all

moments of εi for i = 1, . . . , n. We assume thatω′
= ω+1; this is

without loss of generality since we can reduce other cases to this
one by dividing each side of Eq. (1) byω′

−ω. We relax (iii) and (iv)
in Section 8. The assumptions (i)–(iv) are stronger than those of e.g.
White (1980), but are sufficient to guarantee the existence of unbi-
ased estimators (not just asymptotically so) of β . We do not make
any further assumptions about the error terms, such as Var(εi) > 0
or homoskedasticity.

We present two exact tests at the level of significance α > 0 for
the one-sided hypothesis H0 : βj ≤ β̄j against H1 : βj > β̄j, where
β̄j ∈ R.5 Exact means that the probability of a type I error of the
test is proven to be at most α for any random vectors (X, ε) that
satisfy (i)–(iv). In particular, bounds on the probabilities of type I
errors are guaranteed for every given sample size.

Both tests have a type I error probability bounded by the nomi-
nal level conditional on the realization of X . This allows to combine
both tests into another exact test according to the following pro-
cedure: given X , select the test for which our bounds guarantee a
type II error probability below 0.5 for the largest range of the pa-
rameter to be tested. This is the procedure that we implement in
our software and in the numerical applications.

3. The nonstandardized test

Assumption (ii) ensures the existence of τj ∈ Rn such that
X ′τj = ej, where ejj = 1 and ejk = 0 for k ≠ j. For such τj, β̂j = τ ′

j Y
is an unbiased estimate of βj. One example of τj is the system of
coefficients for which τ ′

j Y is the OLS estimate of βj. We present a
test for a given such vector τj, and later discuss the choice of τj. We
let ∥ ∥∞ denote the supremum norm, and ∥ ∥ denote the Euclidean
norm, while Φ denotes the cumulative normal distribution.

Consider the functions defined for σ > 0, t > 0, and τj ∈ Rn:

ϕC(σ , t) =
σ 2

σ 2 + t2

4 Without any restriction on the support of Y , the possibility of very small or very
large outcomes that occur with very small probability (fat tails) make it impossible
to make any inference about EY based on the observed values of Y , as shown by
Bahadur and Savage (1956) when testing for means and by Dufour (2003) in linear
regression analysis.
5 Tests of H0 : βj ≥ β̄j,H0 : βj = β̄j , and confidence intervals are derived easily,

see Section 8.
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