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a b s t r a c t

We propose a methodology for combining several sources of model and data incompleteness and partial
identification, which we call Composition Theorem. We apply this methodology to the construction of
confidence regions with partially identified models of general form. The region is obtained by inverting a
test of internal consistency of the econometric structure. We develop a dilation bootstrap methodology
to deal with sampling uncertainty without reference to the hypothesized economic structure. It requires
bootstrapping the quantile process for univariate data and a novel generalization of the latter to higher
dimensions. Once the dilation is chosen to control the confidence level, the unknown true distribution of
the observed data can be replaced by the known empirical distribution and confidence regions can then
be obtained as in Galichon and Henry (2011) and Beresteanu et al. (2011).

© 2013 Elsevier B.V. All rights reserved.

0. Introduction

In several rapidly expanding areas of economic research, the
identification problem is steadily becoming more acute. In policy
and program evaluation (Manski, 1990) andmore general contexts
with censored or missing data (Shaikh and Vytlacil, 2011; Magnac
and Maurin, 2008) and measurement error (Chen et al., 2005), ad
hoc imputation rules lead to fragile inference. In demand estima-
tion based on revealed preference (Blundell et al., 2008) the data
is generically insufficient for identification. In the analysis of so-
cial interactions (Brock and Durlauf, 2001; Manski, 2004), com-
plex strategies to reduce the large dimensionality of the correlation
structure are needed. In the estimation of models with complex
strategic interactions and multiple equilibria (Bjorn and Vuong,
1985; Tamer, 2003), assumptions on equilibrium selection mech-
anisms may not be available or acceptable.

More generally, in all areas of investigation with structural data
insufficiencies or incompletely specified economic mechanisms,
the hypothesized structure fails to identify a unique possible data
generating mechanism for the data that is actually observed. In
such cases, many traditional estimation and testing techniques be-
come inapplicable and a framework for inference in incomplete
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models is developing, with an initial focus on estimation of the
set of structural parameters compatible with true data distribu-
tion (hereafter identified set). A question of particular relevance in
applied work is how to construct valid confidence regions for the
identified set. Formal methodological proposals abound since the
seminal work of Chernozhukov et al. (2007), but computational ef-
ficiency is still a major concern.

In the present work, we propose a methodology that clearly
distinguishes how to deal with sampling uncertainty on the one
hand, and model uncertainty on the other, so that unlike previ-
ous methodological proposals, a search in the parameter space is
conducted only once, thereby greatly reducing the computational
burden. The key to this separation is to deal with sampling vari-
ability without any reference to the hypothesized structure, using
a methodology we call the dilation method. This consists in dilat-
ing each point in the space of observable variables in such a way
that the empirical probability (which is known) of a dilated set
dominates the true probability (which is unknown) of the original
set (before dilation). The unknown true probability (i.e. the true
data generating mechanism) is then removed from the analysis,
and we can proceed as if the problem were purely deterministic,
hence apply the methods proposed in Galichon and Henry (2011)
and Beresteanu et al. (2011).

To construct confidence regions of level 1−α for the identified
set, such a dilation y ⇒ J(y) (where⇒denotes a one-to-manymap)
must satisfy Ỹ ∗

∈ J(Ỹ ) a.s. for some pair of random vectors (Ỹ ∗, Ỹ ),
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with probability 1 − α, where Ỹ is drawn from the true distribu-
tion of observable variables and Ỹ ∗ is drawn from the empirical
distribution relative to the observed sample.We propose a dilation
bootstrap procedure to construct J , in which bootstrap realizations
Y b
j , j = 1, . . . , n are matched one-to-one with the original sample

points Yj, j = 1, . . . , n so as to minimize ηb
n = maxj=1,...,n ∥Y b

j −

Yσ(j)∥, where the permutation σ defines thematching. Theα quan-
tile of the distribution of ηb

n then defines the radius of the dilation.
When the observable Y is a random variable, the dilation boot-

strap relies on bootstrapping the quantile process, as proposed by
Doss and Gill (1992). However, bootstrapping the quantile process
relies on order statistics and had no higher dimensional generaliza-
tion to date. This is now provided by the dilation bootstrap, which
removes the constraint on dimension through the appeal to op-
timal matching. Although the problem of finding minimum cost
matchings (called the assignment or marriage problem) is very fa-
miliar to economists, as far as we know, its application within an
inference procedure is unprecedented.

The rest of the paper is organized as follows. The next section
describes the econometric framework and introduces the Com-
position Theorem and the dilation method the latter justifies. The
Composition Theorem is of independent interest as it provides a
methodology for combining several sources of data insufficien-
cies and model incompleteness into a unified partial identification
analysis. Section 2.1 discusses the application of the Composition
Theorem to constructing confidence regions for partially identified
parameters. Section 2.3 presents the bootstrap feasible dilation and
its theoretical underpinnings. Section 3 presents simulation evi-
dence on the performance of the dilation bootstrap in comparison
with alternative methods. Section 4 explains how the method ex-
tends to higher dimensions and discrete choice and the last section
concludes.

1. Dilation method and Composition Theorem

We consider the problem of inference on the structural param-
eters of an economic model, when the latter are (possibly) only
partially identified. The economic structure is defined as in Jo-
vanovic (1989), which generalizes (Koopmans and Reiersøl, 1950).
Variables under consideration are divided into two groups. La-
tent variables U capture unobserved heterogeneity in the model.
They are typically not observed by the analyst, but some of their
components may be observed by the economic actors. Observ-
able variables Y include outcome variables and other observable
heterogeneity. They are observed by the analyst and the economic
actors. We call observable distribution P the true probability distri-
bution generating the observable variables, and denote by ν the
probability distribution that generated the latent variables U . The
econometric structure under consideration is given by a binary
relation between observable and latent variables, i.e. a subset of
Y × U, which can be written without loss of generality as a cor-
respondence from U to Y. The pair of random vectors (Y ,U) in-
volved in the model is generated by a probability distribution, that
we denote π . Since the vector U is unobservable, the probability
distribution π is not directly identifiable from the data. However,
the econometric model imposes restrictions on π . The distribution
of its component Y is the observable distribution P . The distribu-
tion of its component U is the hypothesized probability distribu-
tion ν(·|θ). Finally, the joint distribution is further restricted by the
fact that it gives probability 0 to the event {Y ∉ G(U|θ)}. This leads
to the following:

Assumption 1 (Econometric Specification).
(i) Observable variables Y , with realizations y ∈ Y ⊆ Rdy and

latent variables U , with realizations u ∈ U ⊆ Rdu , are defined
on a common probability space (Ω, F , P) and satisfy the re-
lation Y ∈ G(U) ⊆ Y almost surely.

(ii) The correspondence G : U → 2Y is known by the analyst up
to a finite dimensional vector of parameters θ ∈ Θ ⊆ Rdθ . It
is denoted G(·; θ). For all θ ∈ Θ,G(·; θ) is measurable (i.e. the
set {u : G(u; θ) ∩ A ≠ ∅} is measurable for each open subset
A of Y) and has non empty and closed values.

(iii) The distribution ν of the unobservable variables U is assumed
to belong to a parametric family ν(·|θ), θ ∈ Θ . The same no-
tation is used for the parameters of ν and G to highlight the
fact that they may have components in common.

In more realistic models, computing G(·; θ) can be challenging
as G (u, θ) is a set, so the combinatorial complexity of the problem
may be severe. Note that the measurability and closed values
assumptions are very mild conditions. The assumption that the
correspondence is non-empty, however, may be restrictive. In
the revealed preferences example, we require that the demand
correspondence be non empty. In the games example, we require
existence of an equilibrium.

Example 1 (Revealed Preferences). This approach is particularly
well suited to revealed preference analysis. Suppose Y is the vec-
tor of observed choices made by an agent, possibly over several
periods. Suppose the agent maximized a utility u(Y ,U|θ) under
constraints g(Y ,U|θ) ≤ 0 (budget constraints, etc. . . ), where
θ is a vector of structural parameters (including elasticities, risk
aversion, etc. . . ) and U a random vector describing unobserved
heterogeneity. Call G(U|θ) the demand correspondence, i.e. the set
of utility maximizing choices. Then G(U|θ) exhausts all the infor-
mation embodied in the utility maximization model.

Example 2 (Games).Another family of examples of our framework
arises with parametric games. Let N players with observable char-
acteristics X = (X1, . . . , XN) and unobservable characteristicsU =

(U1, . . . ,UN) have strategies Z = (Z1, . . . , ZN) and payoffs param-
eterized by X,U, Z and θ . For a given choice of equilibrium concept
in pure strategies, call C(X,U, θ) the equilibrium correspondence,
i.e. the set of pure strategy equilibrium profiles. Then the empirical
content of the game is characterized by Z ∈ C(X,U, θ), which can
be equivalently rewritten Y ∈ G(U; θ) with Y = (Z, X).

For any given value of the structural parameter vector θ , a joint
distribution satisfying all these restrictionsmay ormay not exist. If
it does, it is generally non unique. The identified setΘI is the collec-
tion of values of the structural parameter vector θ for which such
a joint probability distribution does indeed exist. If ΘI = ∅, the
model is rejected; on the contrary, if ΘI is nonempty, then it may
contain one point, in which case the parameter vector θ is point
identified, or several, in which case the parameter θ is set identi-
fied. The identified ΘI , first formalized in this way in Galichon and
Henry (2006) is sometimes called ‘‘sharp identification region’’ to
emphasize the fact that it exhausts all the information on the pa-
rameter available in the model. We can characterize it in the fol-
lowing way, which we take as our formal definition.

Definition 1 (Identified Set).

ΘI =


θ ∈ Θ | ∃Ỹ ∼ P, Ũ ∼ ν(·|θ) : P(Ỹ ∉ G(Ũ|θ)) = 0


.

Our inference method on the identified set will be based on a
general way of combining sources of uncertainty (sampling uncer-
tainty or data incompleteness) by composition of correspondences.
Suppose the probability measure Q on Y is the known distribution
of a random vector Z and that it is related to the true unknown dis-
tribution P of the observed variables Y by the following relation:

Assumption 2 (Dilation). There exists a correspondence J : Y ⇒ Y

such that P(Z̃ ∉ J(Ỹ )) ≤ β for some Z̃ ∼ Q , Ỹ ∼ P and 0 ≤ β < 1.



Download English Version:

https://daneshyari.com/en/article/5096251

Download Persian Version:

https://daneshyari.com/article/5096251

Daneshyari.com

https://daneshyari.com/en/article/5096251
https://daneshyari.com/article/5096251
https://daneshyari.com

