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a b s t r a c t

First difference maximum likelihood (FDML) seems an attractive estimation methodology in dynamic
panel data modeling because differencing eliminates fixed effects and, in the case of a unit root,
differencing transforms the data to stationarity, thereby addressing both incidental parameter problems
and the possible effects of nonstationarity. This paper draws attention to certain pathologies that arise in
the use of FDML that have gone unnoticed in the literature and that affect both finite sample performance
and asymptotics. FDML uses the Gaussian likelihood function for first differenced data and parameter
estimation is based on thewhole domain overwhich the log-likelihood is defined. However, extending the
domain of the likelihood beyond the stationary region has certain consequences that have a major effect
on finite sample and asymptotic performance. First, the extended likelihood is not the true likelihood even
in the Gaussian case and it has a finite upper bound of definition. Second, it is often bimodal, and one of
its peaks can be so peculiar that numerical maximization of the extended likelihood frequently fails to
locate the global maximum. As a result of these pathologies, the FDML estimator is a restricted estimator,
numerical implementation is not straightforward and asymptotics are hard to derive in cases where the
peculiarity occurs with non-negligible probabilities. The peculiarities in the likelihood are found to be
particularly marked in time series with a unit root. In this case, the asymptotic distribution of the FDMLE
has bounded support and its density is infinite at the upper bound when the time series sample size
T → ∞. As the panel width n → ∞ the pathology is removed and the limit theory is normal. This result
applies even for T fixed and we present an expression for the asymptotic distribution which does not
depend on the time dimension. We also show how this limit theory depends on the form of the extended
likelihood.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Maximum likelihood estimation based on first-differenced data
(FDML) has recently attracted attention as an alternative estima-
tion methodology to conventional maximum likelihood (ML) and
GMM approaches in dynamic panel models (Hsiao et al., 2002;
Kruiniger, 2008). FDML appears to offer certain immediate advan-
tages in dynamic panels with fixed effects. Unlike unconditional
MLwhere fixed effects are treated as parameters to estimate, FDML
is free from the incidental parameter problem (Neyman and Scott,
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1948) because nuisance individual effects have already been elim-
inated before deriving the likelihood. In addition, the differenced
data are stationary whether the original data are stationary or in-
tegrated, and hence the presence of a unit root does not appear
to require any special treatment or modification of the likelihood
function. This feature is deemed especially useful when panel data
show a large degree of persistence.

These advantages, coupled with the computational conve-
nience of modern numerical optimization, have spurred the use of
FDMLE in applied research. The empirical literature dates back to
MaCurdy (1982). But there has been little research on themethod’s
properties or on certain of its peculiarities such as negative vari-
ance estimates that are known to arise in its implementation by
numerical optimization. Most importantly, it seems not to have
been recognized in the literature that FDMLE is not a maximum
likelihood procedure because the ‘likelihood’ that is used in opti-
mization is based on analytically extending the stationary likeli-
hood outside the stationary region. The resulting function is not a
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true likelihood outside the stationary region even though it is well
defined for certain nonstationary regions. This feature of FDMLE
is subtle, which partly explains why it has gone unnoticed in the
literature for so long. But it has significant implications and leads
to further complications, including an upper bound restriction on
the domain that affects both finite sample theory and asymptotic
behavior. An investigator may, of course, choose a priori to restrict
the domain of the autoregressive roots to the unit circle, but in this
event an appropriate asymptotic theory that accounts for the re-
striction would need to be used in practical work.

Wilson (1988) provided an exact likelihood for the differenced
data generated from a stationary AR(1) process based on Ansley’s
(1979) expression for ARMA(1, 1), and discovered in simulations
that FDMLE outperforms the maximum likelihood (ML) estima-
tor in terms of mean squared error for small samples. Hsiao et al.
(2002); hereafter HPT) studied FDML in linear dynamic panelmod-
elswithwide short panels – that is panelswith large cross sectional
dimension (n) and short time series length (T ) – where conven-
tional ML is inconsistent due to the effects of incidental param-
eters. The authors appealed to standard regularity conditions for
the asymptotic theory of FDMLE, and used Newton–Raphson opti-
mization in simulations to compute the FDMLE. Their simulations
confirmed the superior performance of the FDMLE in terms of bias,
root mean square error, test accuracy and power over a range of
commonly used panel estimators. HPT do note that FDMLE ‘‘some-
times breaks down completely’’ giving negative variance estimates
and estimates of the autoregressive coefficient greater than unity
but they ‘‘skipped those replications altogether’’ and provided no
analysis of these anomalies.

The presentworkwill explain these anomalies andmake it clear
why standard asymptotic arguments do not apply to derive the
limit theory of the FDMLE. The most closely related work to the
present paper is Kruiniger (2008). Kruiniger derived asymptotics
for the FDMLE in the panel AR(1) model with large nT (i.e., for n
or T large or both n and T large) for the stationary case, and with
large n and arbitrary T for the unit root case. Though first differ-
encing uses up one observation for each panel, there appears to be
no serious information loss in comparisonwith other methods like
ML because one degree of freedom is needed in conventionalML to
identify each individual intercept. Curiously, the asymptotics that
are nowavailable speak to the opposite, although this has not so far
been discussed in the literature. Indeed, for AR(1) panelswith large
n, large T and a unit root, the LSDV estimator (which is theMLE un-
der normality of the idiosyncratic error, conditional on initial ob-
servations and without any restriction of covariance stationarity)
is known to have a N(0, 51

5 ) limit distribution when the bias is cor-
rected (Hahn andKuersteiner, 2002). By contrast, the FDMLE is also
asymptotically normal, has no asymptotic bias and its limit vari-
ance is 8 (Kruiniger, 2008), thereby producing an asymptotic gain
in efficiency at unity over bias corrected LSDV. This reduction in
asymptotic variance between the two ML approaches is partly ex-
plained by the fact that the FDMLE uses a stationarity condition for
the differenced data in setting up the likelihood. Such a condition
does not allow for the fact that differenced data is explosive when
the AR coefficient exceeds unity, thereby leading to an implied re-
striction on the model and parameter space that affects both finite
sample and asymptotic behavior.

Recent work by Han et al. (2011, forthcoming) shows that
there are other estimators involving difference transformations
that have performance superior to the bias corrected MLE in dy-
namic panels. These authors give a panel fully aggregated estima-
tor (FAE) that aggregates the effects of a full set of differences in
a simple linear regression framework. The panel FAE has a limit-
ing N(0, 9) distribution after centering and standardization, and
like the FDMLE is more efficient asymptotically than the bias cor-
rected MLE with no stationarity restriction imposed (i.e., the bias

corrected LSDV) for the autoregressive coefficient in a vicinity of
unity. There is much other recent work on dynamic panel mod-
els, but none of that work relates to the issues connected with the
FDMLE procedure that are discussed in the present paper.

For all the attractive properties of FDMLE, some of its most
important features have not been noted or studied in the literature.
These features, as we demonstrate here, play a critical role in the
asymptotic theory and in the finite sample performance of the
estimator. First and most importantly, the ‘likelihood’ function
considered in the panel literature that is used for numerical
computation of the FDMLE is not in fact the correct likelihood
function over thewhole domain. As indicated above, it is a pseudo-
likelihood based on extending the stationary likelihood outside its
natural domain of definition to a bounded part of the nonstationary
region. Second, this pseudo ‘likelihood’ function can behave so
wildly that numerical maximization procedures can often fail
to identify the global maximum. These two issues combine to
make a careful analytical treatment of FDMLE very difficult. On
the one hand, the asymptotic theory depends subtly on the
(rapidly changing) form of the likelihood function near its natural
upper boundary which arises from the extension of the stationary
likelihood. On the other hand, the wild behavior of the likelihood
itself often compromises the numerical evaluation of the FDMLE,
giving rise to anomalous results such as those reported above.

The present paper explains these pathologies and theirmaterial
impact on the finite sample distribution and limit distribution of
the FDMLE.We also show how the effects of this anomaly diminish
when the FDML is applied to dynamic panel data as the cross-
sectional dimension increases.

The next section lays out the model, notation and discusses
the FDML ‘likelihood’. Section 3 examines the anomaly that arises
when the data are persistent, considering in turn the time series
(n = 1), panel (n > 1) and panel asymptotic case (n → ∞).
Section 4 concludes. Proofs are given in the Appendix and refer-
ence is made to the original version of this paper (Han and Phillips,
2010) for further technical details. Throughout the remainder of
the paper it will be convenient to use the notation Tm = T −m and
T̃m = T + m.

2. Model, notation and the FDMLE

We consider a Gaussian panel yit generated by the simple panel
dynamic model yit = ηi(1 − ρ0) + ρ0yit−1 + εit , where εit ∼

iid N(0, σ 2
0 ) and −1 < ρ0 ≤ 1.1 Suppose that yit is observed for

i = 1, . . . , n and t = 0, . . . , T .
The likelihood function is derived from the joint distribution of

∆yi := (∆yi1, . . . ,∆yiT )′. Under the stationarity assumption for
∆yit , we have

∆yi ∼ N

0, σ 2

0 CT (ρ0)

, (1)

where CT (ρ0) is a Toeplitz matrix whose leading row is formed
from the elements 1

1+ρ0
{2,−(1−ρ0),−ρ0(1−ρ0), . . . ,−ρT−2

0 (1−
ρ0)}. Direct evaluation leads to det CT (ρ0) = JT (ρ0)/(1 + ρ0),
where JT (ρ) = T̃1 − T1ρ (e.g., Galbraith and Galbraith, 1974; HPT,
2002; Kruiniger, 2008; Han, 2007). Thus, for −1 < ρ ≤ 1 and
σ 2 > 0, the log-likelihood function for∆yi is

ln L(ρ, σ 2) = −
nT
2

ln 2π −
nT
2

ln σ 2
−

n
2
ln

JT (ρ)
1 + ρ


−

1
2σ 2

n
i=1

∆y′

iCT (ρ)
−1∆yi. (2)

1 The analysis can be extended to the model where yit is replaced with yit −

β ′xit and xit contains exogenous regressors. The focus in the present paper is
on the estimation of ρ and the peculiarities of its limit theory. Asymptotics for
the corresponding estimates of β may be derived in a standard way and are not
discussed here.
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