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a b s t r a c t

This paper investigates identification and estimation of a class of nonlinear panel data, single-index
models. The model allows for unknown time-specific link functions, and semiparametric specification
of the individual-specific effects. We develop an estimator for the parameters of interest, and propose a
powerful new kernel-basedmodified backfitting algorithm to compute the estimator. We derive uniform
rates of convergence results for the estimators of the link functions, and show the estimators of the finite-
dimensional parameters are root-N consistent with a Gaussian limiting distribution. We study the small
sample properties of the estimator via Monte Carlo techniques.
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1. Introduction

This paper is concerned with identification and estimation of
the following semiparametric regression model:
yit = Φt (xitβ + η(zi)) + ϵit , t = 1, . . . , T , (1.1)
where xit is a K -dimensional row vector of random variables, zi is
an L-dimensional row vector of time-constant random variables,
ϵit is an individual- and time-specific idiosyncratic shock that
is assumed to be mean independent of the other explanatory
variables, β is a K -dimensional vector of parameters, Φt is a
strictly increasing and smooth unknown link function, and η is an
unknown function. The parameters of primary interest are β , and
Φ := {Φt , t = 1, . . . , T }.

We propose a powerful new kernel-based algorithm to com-
pute the estimator for the parameters of interest. The algo-
rithm combines the profile likelihood approach of Severini and
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Wong (1992) with the backfitting algorithms of Buja et al. (1989),
Mammen et al. (1999, 2001), and extends them to the present
framework. The algorithm fully implements the identification re-
strictions of the model. We provide sufficient conditions under
which the algorithm converges. Also, we derive uniform rates of
convergence results for the estimators of the link functions, and
show the resulting estimator of β is

√
N-consistent with a Gaus-

sian limiting distribution. Furthermore, estimation of the finite-
dimensional parameters is adaptive with respect to estimation of
the link functions.

The model presented in Eq. (1.1) is a panel data version of
the generalized partial-linear model (GPLM) with unknown link
functions. Other methods can be used to estimate the parameters
of the model, including the backfitting estimator developed
in Opsomer (2000), among others, and the methods of series and
sieve minimum distance estimation developed in Newey (1994a),
Newey and Powell (2003), Ai and Chen (2003), Chen (2007) and
Gayle andViauroux (2007). However, themethoddeveloped in this
paper has some key advantages over these alternatives.

Opsomer (2000) develops a backfitting procedure to estimate
the parameters of additive and partial linear models. This
procedure can bemodified to the panel data framework. However,
it is unclear how to impose shape constraints on the estimators
of the infinite-dimensional parameters in an internally consistent
way using the method developed in Opsomer (2000). Indeed, a
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maintained assumption for identification of the parameters of
interest in Eq. (1.1) is that the link functions are strictlymonotonic.
On the other hand, the modified backfitting algorithm developed
in Mammen et al. (1999, 2001) accommodates shape restrictions
on the infinite-dimensional parameters under the same empirical
norm as the one constructed to define estimators of all the
parameters. Another key advantage of the algorithm developed
in Mammen et al. (1999, 2001) is that its convergence is well
understood, and does not depend on initial values.

Alternatively, estimating the parameters of interest by im-
plementing the methods of series or sieve estimation developed
in Newey (1994a), Newey and Powell (2003), Ai and Chen (2003),
Chen (2007), and Gayle and Viauroux (2007) is feasible. However,
these methods rely on the choice of smoothers used to compute
the estimators of the infinite-dimensional parameters. The estima-
tor developed in this paper can be computed using a wide vari-
ety of smoothers.1 We focus on the case where the smoothers are
kernels. To the best of our knowledge, no existing studies investi-
gate kernel-based estimation of panel data GPLM models such as
Eq. (1.1) with shape constraints on the unknown link functions.

The model developed in this paper builds on previous work
of Chamberlain (1980), Newey (1994a), Chen (1998), and Arellano
and Carrasco (2003), to name a few, concerning the estimation of
binary-choice, panel data models with individual-specific effects.
The common strategy of these papers, as well as ours, is to impose
restrictions on the conditional distribution of the individual-
specific effects, conditioned on the observed regressors. However,
the estimator developed here differs in a variety of ways.

The estimator we propose in this paper treats both Φ and η
as unknown functions. The models (Chamberlain, 1980) propose
assume the link functions are known, and that η is known up to
a set of finite-dimensional parameters. Newey (1994a) extends
this framework to allow for η to be an unknown function, while
maintaining the parametric specification of the link functions.
We extend the model presented in Newey (1994a) to allow for
unspecified time-specific link functions. In the discrete-choice
framework, Chen (1998) modifies the framework of Newey
(1994a) by relaxing the parametric specification of the link
functions at the cost of increased restrictions on the finite-
dimensional parameters. In this paper, we achieve identification
and estimation without these additional restrictions on the
finite-dimensional parameters. We restrict identification of the
parameters of interest to the static panel data framework. Arellano
and Carrasco (2003) develop a panel data discrete-choice model
that allows for predetermined explanatory variables. However,
the model (Arellano and Carrasco, 2003) present assume the link
functions are known.

Other important developments in the semiparametric panel
data literature include Manski (1987); Honoré and Lewbel
(2002). Compared with Manski (1987), this paper imposes
stronger restrictions on the joint distribution of the individual
effects and observed regressors, but allows for the errors to be
heteroskedastic over time. Honoré and Lewbel (2002) impose a
different conditional independence assumption on the distribution
of the individual-specific effects and the error term given the
observables, which is neither weaker nor stronger than the one
we impose in this paper. Also, Honoré and Lewbel (2002) imposes
stronger support conditions on the observable and unobservable
explanatory variables.

In the next section, we provide an example of how Eq. (1.1) is
derived from the familiar binary-choice, single-index panel data
model. However, our own interest goes beyond the binary-choice

1 See Mammen et al. (2001) for discussions on the implementation of the
Nadaraya–Watson smoother and series smoothers.

framework. Any model that can be presented in the form of
Eq. (1.1) can be estimated using the method we develop in this
paper.

We investigate the small sample performance of the proposed
estimator in two environments by Monte Carlo analysis. The first
exercise examines the performance of the estimator in a static,
panel data discrete-choice model, and the second in a static, panel
data continuous-outcome model. The simulation exercises show
the estimator performs well in small samples.

Weorganize the rest of the paper as follows. Section 2motivates
Eq. (1.1) by describing how it is derived from various econometric
models. Section 3 discusses identification, and Section 4 presents
the estimator. Section 5 presents the algorithm used to compute
the estimator. Section 6 derives the large sample properties of
the estimator. Section 7 proposes an estimator for the asymptotic
variance of the finite-dimensional parameters. Section 8 is devoted
to theMonte Carlo simulations, and Section 9 concludes. All proofs
and auxiliary lemmas are in the Appendix.

2. The model

In this section, we discuss how Eq. (1.1) may be derived from
more primitive econometric models. Consider the following panel
data, single-index model for a unit of observation, i:

yit = Ft(xitβ + µi) + rit , t = 1, . . . , T , (2.1)

where yit is the dependent variable, xit are observable time-
varying explanatory variables,µi is the time-invariant unobserved
effect, Ft is an unknown, strictly increasing function, and rit is the
idiosyncratic error where E[rit |xit , µi] = 0, t = 1, . . . , T . It is well
known that Eq. (2.1) can be derived from the following panel data,
single-index discrete-choice model:

yit = 1{xitβ + µi − uit ≥ 0}, t = 1, . . . , T , (2.2)

where xit and µi are as described, uit is independent of xit and
µi with an unknown time-specific distribution function Ft that is
absolutely continuous with respect to a Lebesgue measure.

Suppose that for each unit of observation, a vector of ob-
servable time-invariant explanatory variables, zi, exists, and as-
sume the individual-specific effects can be decomposed as follows:
µi = η(zi) + vi. Assume that vi is independent of zi and xi :=

(xi1, . . . , xiT ) with distribution that is absolutely continuous with
respect to a Lebesgue measure, and has a Radon–Nikodym deriva-
tive fv . Under these assumptions, taking conditional expectations
of yit conditional on (xit , zi, vi) in Eq. (2.1) gives

E[yit |xit , zi, vi] = Ft(xitβ + µi) = Ft(xitβ + η(zi) + vi).

Eq. (2.1) is therefore obtained by defining rit = yit −E[yit |xit , zi, vi].
Furthermore, by the law of iterated expectations,

E[yit |xit , zi] = Φt(xitβ + η(zi)),

where Φt(a) :=

Ft(a + v)fv(v)dv. By defining ϵit = yit −

E[yit |xi, zi], we obtain Eq. (1.1), where Φt inherits the monotonic-
ity constraint on Ft . Because we estimate Φt , and not Ft , any
predictions made using these estimates should be interpreted as
predictions made after integrating out the ‘‘pure’’ random effects
component, vi. Note that Ft is not needed to obtain average partial
effects, because these effects can be computed from Φt , β , and η.
This discussion shows that under certain assumptions, and by ap-
propriately defining zi, Eq. (1.1) is implied by a variety of models
that are popular in applied work.

Returning to Eq. (1.1), define wit = (xit , zi). By taking condi-
tional expectations of yit conditioned on wit in Eq. (1.1), we obtain

Pit := P(wit) := E[yit |wit ] = Φt(xitβ + η(zi)),
t = 1, . . . , T . (2.3)

The following assumption formalizes the monotonicity con-
straint on the link function we will maintain in this paper.
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