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a b s t r a c t

This paper considers the problem of forecasting under continuous and discrete structural breaks and
proposes weighting observations to obtain optimal forecasts in the MSFE sense. We derive optimal
weights for one step ahead forecasts. Under continuous breaks, our approach largely recovers exponential
smoothing weights. Under discrete breaks, we provide analytical expressions for optimal weights in
modelswith a single regressor, and asymptotically validweights formodelswithmore than one regressor.
It is shown that in these cases the optimal weight is the same across observations within a given
regime and differs only across regimes. In practice, where information on structural breaks is uncertain,
a forecasting procedure based on robust optimal weights is proposed. The relative performance of
our proposed approach is investigated using Monte Carlo experiments and an empirical application to
forecasting real GDP using the yield curve across nine industrial economies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is now widely recognized that parameter instability is an im-
portant source of forecast failure in macroeconomics and finance
as documented by Pesaran and Timmermann (2002); Pesaran et al.
(2006), Koop and Potter (2007); Giacomini and Rossi (2009); In-
oue and Rossi (2011), among others. Clements and Hendry (1999,
2006); Rossi (2011) provide reviews. Broadly speaking, there are
two basic approaches to modeling parameter instability: param-
eters are assumed to change either at discrete time intervals or
continuously. Under the former, break dates are estimated and
forecasts are typically constructed using the post-break observa-
tions.1 Assuming that the break dates are accurately estimated,
the forecasts based on observations after the last break are likely
to be unbiased. However, as pointed out by Pesaran and Tim-
mermann (2007), forecasts from the post-break window may not
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dates, such as Brown et al. (1975); Andrews (1993); Andrews et al. (1996); Bai and
Perron (1998, 2003); Altissimo and Corradi (2003).

minimize the mean square forecast error (MSFE) as the estima-
tion uncertaintymay be large due to the relatively short post-break
window. For this reason Pesaran and Timmermann (2007) suggest
an optimal estimation window that may include pre-break obser-
vations. When the time and size of the break is uncertain, Pesaran
and Timmermann (2007) consider averaging forecasts across esti-
mation windows (AveW), which, as Pesaran and Pick (2011) show,
improves forecastswithout relying on estimates of break dates and
sizes.

Under the continuously changing parameter model, the breaks
are assumed to occur at every period, and observations are down-
weighted to take account of the slowly changing nature of the
parameters. Within this framework, a prominent approach is
exponential smoothing (ExpS), first proposed by Holt (1957);
Brown (1959). Other approaches using Kalman filters have also
been proposed as generalizations of ExpS. Hyndman et al. (2008)
provide a comprehensive survey.

In this paper, we develop a unified approach to obtaining
optimal forecasts under both types of structural breaks, focus-
ing on one-step-ahead forecasts. We consider forecasts based on
weighted observations as in the ExpS approach but derive weights
that are optimal in the sense that the resulting forecasts minimize
the MSFE. In the case of continuous breaks, the optimal weights
approximate ExpS weights if T is large and the downweighting pa-
rameter of ExpS is not too close to unity. In contrast, when the
breaks are assumed to occur at discrete time intervals the optimal
weights can differ markedly from the ExpS weights. We show that,
conditional on the break size and date, the optimal weights follow

0304-4076/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jeconom.2013.04.002

http://dx.doi.org/10.1016/j.jeconom.2013.04.002
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2013.04.002&domain=pdf
mailto:pick@ese.eur.nl
http://dx.doi.org/10.1016/j.jeconom.2013.04.002


M.H. Pesaran et al. / Journal of Econometrics 177 (2013) 134–152 135

a step function that allocates constant weights within regimes but
different weights between regimes. A striking result emerges un-
der multiple breaks: observations of the last regime that continues
into the forecast period may not receive the highest weight. The
intuition for this result is that the bias component of the MSFE can
be reduced by giving the largest weights to observations in an ear-
lier regime to counterbalance biases of the opposite sign in another
regime.

In practice, dates and sizes of the breaks are unknown andmust
be estimated. As such estimates tend to be quite imprecise and
their use in practice leads to a deterioration of forecasts, which
can be quite substantial. In order to address this problem, we
develop weights that are robust to the uncertainty that surrounds
the dates and the sizes of the breaks. Robust optimal weights
are derived by integrating the optimal weights with respect to
uniformly distributed break dates. An interesting insight from
these derivations is that the effect of uncertainty of the break size
on theweights is of order T−2 if the break is in the slope coefficient,
and of order T−3 if the break is in the error variances, where T is
the full sample size that includes the pre-break observations. In
contrast, the uncertainty around the break date is of order T−1,
which suggests that dating a break correctly is generally more
important than knowing the precise size of the break.

We conduct Monte Carlo experiments that compare the fore-
casts from optimal and robust optimal weights to a range of alter-
native forecasting methods. It emerges that the key factor for the
relative performance of different forecasting methods under a dis-
crete break is the size of the break. A larger break leads to more
precise estimates of the break date and improves forecasts that are
conditional on these estimates, which include the optimal weights
forecast, post-break forecasts, and optimal window forecasts. In
contrast, when the break is small relative to the noise in the DGP,
the robust optimal weights produce the best forecasts as they do
not make use of the often imprecisely estimated break dates and
sizes. When the break process is continuous, ExpS forecasts that
estimate the down-weighting parameter perform well. However,
even under the continuous break process the forecasts from the
robust optimal weights perform well and in some settings provide
the best forecasts.

We use the different methods considered in this paper to fore-
cast real GDP using the slope of the yield curve across nine in-
dustrial economies over the period 1994Q1–2009Q4. The general
finding is that breaks are difficult to estimate with sufficient accu-
racy and, similar to the Monte Carlo results, forecasts based on es-
timates of break dates perform poorly. Forecasts based on robust
optimal weights deliver the largest improvements over forecasts
based on equal weights, and these improvements are statistically
significant.

The rest of the paper is set out as follows. Using a linear regres-
sion model, derivations of optimal weights under different break
processes are set out in Section 2, and theMSFE outcomes are com-
pared across different forecasting methods. Optimal weights that
are robust to the uncertainty of the break process are motivated
and derived in Section 3. Monte Carlo evidence on the compara-
tive performance of the different forecasting methods is discussed
in Section 4. Empirical results are presented in Section 5. The pa-
per ends with some concluding remarks in Section 6. A few of the
less essential derivations are collected in amathematical appendix.
Additional material can be found in a web supplement.

2. Optimal weights under different break processes

Consider the linear regression model

yt = β′

txt + σtεt , εt ∼ iid(0, 1),
t = 1, 2, . . . , T , T + 1

(1)

where xt is a k × 1 vector of stationary regressors, and the k × 1
coefficient vector, βt , and the scalar error variance, σ 2

t , are subject
to breaks. We consider two possible types of break processes. A
continuous break process whereby βt changes in every period by a
relatively small amount. A prominent example is the randomwalk
model

βt = βt−1 + Sβvt , where vt ∼ iid(0, Ik),
where Ik is the identity matrix of order k, and the break variance,
6β = SβS ′

β , is assumed to be small relative to σ 2
t .

2 Additionally, σt
may be subject to a similar break process. Alternatively, the breaks
could be discrete where the parameters change at a small number
of distinct points in time, Tb,i, i = 1, 2, . . . , n,3

βt =


β(1) for 1 < t ≤ Tb,1
β(2) for Tb,1 < t ≤ Tb,2
...
β(n+1) for Tb,n < t ≤ T .

In contrast to the continuously changing parameter model, the
number of discrete breaks, n, is assumed to be small, although the
break sizes, measured by

β(i) − β(i−1)

 could be large relative to
σt . There are merits in both specifications, and a choice between
them would depend on the particular data at hand.

We propose a general approach to achieve a minimum mean
square forecast error (MSFE) under both break processes. We
weight past observations by weightswt in the estimation

β̂T (w) =


T

t=1

wtxtx′

t

−1 T
t=1

wtxtyt ,

subject to the restriction
T

t=1wt = 1. The weightsw = (w1, w2,
. . . , wT )

′ are chosen such that the resulting MSFE of the one-step
ahead forecast, ŷT+1 = β̂

′

TxT+1, is minimized.
Closed form solutions under the continuous break process are

only available when we simplify the model to one without time-
varying regressors. In this setting the optimal weights recover the
exponential smoothing forecast. For the discrete break process we
derive new results for the same simple model and also for models
with one or more regressors.

2.1. Optimal weights in a model with continuous breaks

Consider the following model

yt = βt + σεεt , (2)

where βt = βt−1 + σvvt , and εt and vt are iid(0, 1). The optimal
weights for a one-step ahead forecast can be found by minimizing
E(yT+1 − ΣT

t=1wtyt)2 with respect to wt , t = 1, 2, . . . , T , subject
to
T

t=1wt = 1. For a solution to this problem we first note that
the forecast error is given by

eT+1 = yT+1 − β̂T+1(w) = βT+1 − w′β + σε(εT+1 − w′ε),

where β = (β1, β2, . . . , βT )
′. But using the randomwalk formula-

tion of β we have β = β0ιT + σvHv,where v = (v1, v2, . . . , vT )
′,

H =


1 0 0 0 0
1 1 0 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 , and ιT =


1
1
...
1
1

 .

2 The covariance matrix 6β is said to be small relative to σt if
6β

 /σt is small,
where ∥A∥

2
= tr(AA′) denotes the Euclidean norm of matrix A.

3 Note that parentheses around subscripts denote subsamples between breaks,
such that βt is the parameter at period t but β(i+1) the parameter after break i.
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