
Journal of Econometrics 177 (2013) 153–170

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Adaptive forecasting in the presence of recent and ongoing
structural change
Liudas Giraitis a, George Kapetanios a,∗, Simon Price b,c

a Queen Mary, University of London, United Kingdom
b Bank of England, London, United Kingdom
c City University, London, United Kingdom

a r t i c l e i n f o

Article history:
Available online 6 April 2013

JEL classification:
C100
C590

Keywords:
Recent and ongoing structural change
Forecast combination
Robust forecasts

a b s t r a c t

We consider time series forecasting in the presence of ongoing structural change where both the time
series dependence and the nature of the structural change are unknown. Methods that downweight older
data, such as rolling regressions, forecast averaging over different windows and exponentially weighted
moving averages, known to be robust to historical structural change, are found also to be useful in
the presence of ongoing structural change in the forecast period. A crucial issue is how to select the
degree of downweighting, usually defined by an arbitrary tuning parameter. We make this choice data-
dependent by minimising the forecast mean square error, and provide a detailed theoretical analysis of
our proposal. Monte Carlo results illustrate the methods. We examine their performance on 97 US macro
series. Forecasts using data-based tuning of the data discount rate are shown to perform well.

© 2013 Bank of England. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is widely accepted that structural change is a crucial issue
in econometrics and forecasting. Clements and Hendry suggest
forcefully (in e.g. Clements and Hendry, 1998a,b) that such change
is the main source of the forecast error; Hendry (2000) argues
that the dominant cause of forecast failures is the presence of
deterministic shifts. Convincing evidence of structural change
was offered by Stock and Watson (1996) who looked at many
forecasting models of a large number of US time series, and
found parameter instability in a substantial proportion. This issue
remains relevant: in a survey of the literature on forecasting in
the presence of instabilities for the Handbook of Forecasting, Rossi
(2012) writes ‘the widespread presence of forecast breakdowns
suggests the need for improving ways to select good forecasting
models in-sample’. Ourwork on robust and data driven forecasting
is a contribution to precisely this end. As model parameters
may change continuously, drift smoothly over time or change at
discrete points in an unknownmanner, and bothwithin the sample
and over the forecast period, we consider a general setting where
themodel structure and presence and type of structural change are
all unknown.

There is a large literature on the identification of breaks,
and forecasting methods robust to them (Rossi, 2012). However,
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the deeply practical need to forecast after a recent structural
change, or during a period of such change, has received very little
attention. Asmost forecast approaches are only effective in specific
cases, the problem is compounded by the unknown and therefore
unspecified nature of any structural change.

Detection of structural change has a long history, mainly in
the context of structural breaks (although see Kapetanios (2007)
for the case of smooth structural change). Seminal papers include
Chow (1960), Andrews (1993) and Bai and Perron (1998). But
the question of amendment of forecasting strategies then arises.
While this has been tackled bymany authors, a major contribution
was made by Pesaran and Timmermann (2007). They concluded
that, in the presence of breaks, forecast pooling using a variety
of estimation windows provides a reasonably good and robust
forecasting performance.

Nevertheless, most work on forecasting assumes that change
has occurred when sufficient time has elapsed for post-break
estimation.1 In practice, the issue of change occurring in real
time is a major consideration, which was partly addressed in
Eklund et al. (2010). They considered a variety of forecasting
strategies which can be divided into two distinct groups. In one
case the forecaster monitors for change and adjusts methods
once change has been detected. In the other the forecaster does
not attempt to identify breaks, since that involves a substantial

1 Exceptions include the interesting work of Clements and Hendry (2006) and
Castle et al. (2011).
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time lag. Instead break–robust forecasting strategies are used that
essentially downweight data from older periods deemed to be
irrelevant for the current conjuncture.

While moving in an interesting direction, Eklund et al. (2010)
do not elaborate two issues: how much to downweight past data,
andwhether to do somonotonically. Clearly, any arbitrary discount
factor is unlikely to be optimal. And neither may monotonicity:
for example, if regimes (e.g., monetary policy) come and go then
older data, fromaperiodwhere the current regimepreviously held,
might bemore relevant thanmore recent data from other regimes.

In this paper, we suggest forecasting approaches that address
these issues. Our main contribution is to introduce and analyse
a cross-validation based method which selects a tuning parame-
ter defining the downweighting rate of the older data. We show
that the implied discount rate minimises the mean square error
(MSE) of the forecast in the weighting schemes considered. Fur-
ther, we consider a nonparametric method for determining a flex-
ible weighting scheme. The latter does not assume any particular
shape for the weight function, nor monotonicity. We explore the
properties of the new forecasting methods for a variety of models
in terms of theory, with a Monte Carlo exercise and empirically.
It turns out that the method is valid under a wide range of forms
of structural breaks and persistence, and can be generalised in a
number of practically important dimensions, most notably allow-
ing varying dynamic structures.

A byproduct of our results is a newway to accommodate trends
of a generic nature in forecasting. Unlike many forecasting ap-
proaches that require the removal of stochastic or other trends be-
fore forecasting, ourmethods can be directly applied to the level of
the forecast series.

The rest of the paper is organised as follows. Section 2 presents
our approach for forecasting in the presence of recent structural
breaks. We provide its theoretical justification and asymptotic
MSE, and describe some robust forecasting strategies. Section 3
includes an extensive Monte Carlo study in which these strategies
are evaluated. In Section 4 the methods are used to forecast a
large number of US macroeconomic time series, where we find
results broadly consistent with the Monte Carlo study. Section 5
concludes. Proofs are reported in an Appendix.

2. Adaptive forecasting: econometric framework

2.1. Forecasting strategies

In this section we work with a simple location forecasting
framework that is as general as possiblewhile consistentwith clear
theoretical results. It may be summarised as
yt = βt + ut , t = 1, . . . , T , (2.1)
where βt is an unobserved persistent process, and ut is a stationary
dependent noise that is independent of βt . Unlike most previous
work we wish to place as little structure as possible on the process
βt . We do not specify whether βt is stochastic or deterministic, or
whether it is discontinuous or smooth. The noise process ut is a sta-
tionary linear process with mean zero and finite variance σ 2

u . The
persistent component βt ≡ βT ,t is allowed to be a triangular ar-
ray, and can be a stochastic (unit root) or deterministic (bounded)
trend. This set-up provides sufficient flexibility to our theoretical
analysis of forecasting yt , allowing for βT ,t such as those used in
locally stationary models (e.g. Dahlhaus (1996)), or in persistent
stochastic unit root trend models. For simplicity of notation, we
write yT ,t as yt and βT ,t as βt . It should be stressed that in robust
forecasting, which is our focus, the structure of βt is neither known
nor estimated. Concerning our simple location conditional mean
modelling, we note that our analysis can allow both the use of a
generic model of the conditional mean of the process and robust
forecasting around that model. We discuss details related to this
extension in Section 2.8.

Eklund et al. (2010) find that simple forecasting of yt , based on
weighting schemes that discount past data, works well in practice.
Examples include exponential weighting and forecast combina-
tions based on different estimation windows. By varying a tuning
parameter, such methods impose different shapes on the weight
functions that downweight past data. Their weakness is that it is
not clear how to select the tuning parameters. So data-dependent
tuningmethods for choosing these parameters are of great interest.

One way to calibrate parameters is by optimising on in-
sample forecasting performance. This idea is not new. For ex-
ample, Kapetanios et al. (2006) suggest forecasts where different
models are averaged with weights that depend on the forecast-
ing performance of each model in the recent past. In what follows
we formalise the above ideas, presenting a data-driven weighting
strategy and developing its theoretical analysis.

We consider a linear forecast of yt , based on (local) averaging of
past values yt−1, . . . , y1:

ŷt|t−1,H =

t−1
j=1

wtj,Hyt−j = wt1,Hyt−1 + · · · + wt,t−1,Hy1, (2.2)

with weights wtj,H ≥ 0 such that wt1,H + · · · + wt,t−1,H = 1,
parametrised by a single tuning parameter H . The latter defines
the rate of downweighting the past observations (e.g., the width
of the rolling window). The structure of weights wtj,H is described
in Assumption 1. We assume that H takes values in the interval
IT = [α,Hmax], where α > 0.

Assumption 1. The function K(x) ≥ 0, x ≥ 0 is continuous and
differentiable on its support, such that


∞

0 K(u)du = 1, K(0) > 0,
and for some C > 0, c > 0

K(x) ≤ C exp(−c|x|), |K̇(x)| ≤ C/(1 + x2), x > 0, (2.3)

where K̇ is the first derivative of K . For t ≥ 1, H ∈ IT , set
kj,H = K(j/H) and define

wtj,H =
kj,H

t−1
s=1

ks,H

, j = 1, . . . , t − 1. (2.4)

Example 1. Themain classes of commonly employed weights sat-
isfy this assumption.
(i) Rolling windowweights, with K(u) = I(0 ≤ u ≤ 1).
(ii) Exponential weighted moving average (EWMA) weights, with

K(u) = e−u, u ∈ [0, ∞). Then, with ρ = exp(−1/H), kj,H
= ρ j and wtj,H = ρ j/

t−1
k=1 ρk, 1 ≤ j ≤ t − 1.

(iii) Triangular window weights, with K(u) = 2(1 − u)I(0 ≤ u
≤ 1).

While the rolling window simply averages the H previous ob-
servations, the EWMA forecast uses all observations y1, . . . , yt−1,
increasingly downweighting the more distant past. In practice,
forecasting of a unit root or trending process yt is often conducted
by averaging over the last few observations. When persistence in
yt falls, wider windows may be expected to yield smaller forecast
MSE. It is also plausible that for a stationary process {yt} when de-
pendence is sufficiently strong a forecast discounting past datawill
outperform the samplemean forecast (yt+· · ·+y1)/t . These obser-
vations, supported by the theory below, indicate that the ‘optimal’
selection of H depends on the unknown type of persistence in yt .
Thus, contrary to the usual practice of using a preselected value of
H , a data based selection method for H is indicated.

2.2. Selection of the tuning parameter H

Given a sample y1, . . . , yT , computation of the forecast yT+1|T ,H
requires selection of the parameter H . We use a cross-validation
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