
Journal of Econometrics 177 (2013) 233–249

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Sequential estimation of shape parameters in multivariate
dynamic models✩

Dante Amengual a, Gabriele Fiorentini b,c, Enrique Sentana a,∗

a CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain
b Università di Firenze, Viale Morgagni 59, I-50134 Firenze, Italy
c RCEA, Rimini, Italy

a r t i c l e i n f o

Article history:
Available online 27 April 2013

JEL classification:
C13
C32
G01
G11

Keywords:
Confidence intervals
Elliptical distributions
Efficient estimation
Global systematically important banks
Systemic risk
Risk management

a b s t r a c t

Sequential maximum likelihood and GMM estimators of distributional parameters obtained from the
standardised innovations of multivariate conditionally heteroskedastic dynamic regression models
evaluated at Gaussian PML estimators preserve the consistency of mean and variance parameters while
allowing for realistic distributions. We assess their efficiency, and obtain moment conditions leading
to sequential estimators as efficient as their joint ML counterparts. We also obtain standard errors for
VaR and CoVaR, and analyse the effects on these measures of distributional misspecification. Finally,
we illustrate the small sample performance of these procedures through simulations and apply them
to analyse the risk of large eurozone banks.
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1. Introduction

Both academics and financial market participants are often in-
terested in features of the distribution of asset returns beyond
its conditional mean and variance. In particular, the Basel Capital
Adequacy Accord forced banks and other financial institutions to
develop models to quantify all their risks accurately. In practice,
most institutions chose the so-called Value at Risk (VaR) frame-
work in order to determine the capital necessary to cover their
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exposure to market risk. As is well known, the VaR of a portfo-
lio of financial assets is defined as the positive threshold value V
such that the probability of the portfolio suffering a reduction in
wealth larger than V over some fixed time interval equals some
pre-specified level λ < 1/2. Similarly, the recent financial crisis
has highlighted the need for systemic risk measures that assess
how an institution is affected when another institution, or indeed
the entire financial system, is in distress. Given that the probabil-
ity of the joint occurrence of several extreme events is regularly
underestimated by the multivariate normal distribution, any such
measure should definitely take into account the non-linear depen-
dence induced by the non-normality of financial returns.

A rather natural modelling strategy is to specify a paramet-
ric leptokurtic distribution for the standardised innovations of the
vector of asset returns, such as the multivariate Student t , and
to estimate the conditional mean and variance parameters jointly
with the parameters characterising the shape of the assumed dis-
tribution by maximum likelihood (ML) (see for example Pesaran
et al. (2009) and Pesaran and Pesaran (2010)). Elliptical distri-
butions such as the multivariate t are attractive in this context
because they relate mean–variance analysis to expected utility
maximisation (see e.g. Chamberlain (1983) or Owen and Rabi-
novitch (1983)). Moreover, they generalise the multivariate nor-
mal distribution but retain its analytical tractability irrespective
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of the number of assets. However, non-Gaussian ML estimators
often achieve efficiency gains under correct specification at the
risk of returning inconsistent parameter estimators under distribu-
tionalmisspecification (seeNewey and Steigerwald (1997)). Unfor-
tunately, semiparametric estimators of the joint density of the in-
novations suffer from the curse of dimensionality, which severely
limits their use. Another possibility would be semiparametric
methods that impose the assumption of ellipticity, which retain
univariate nonparametric rates regardless of the cross-sectional di-
mension of the data, but asymmetries in the true distribution will
again contaminate the resulting estimators of conditional mean
and variance parameters.

Sequential estimators of shape parameters that use the Gaus-
sian Pseudo ML estimators of the mean and variance parameters
as first step estimators offer an attractive compromise because
they preserve the consistency of the first two conditionalmoments
under distributional misspecification as long as those moments
are correctly specified and the fourth moments are bounded (see
Bollerslev andWooldridge (1992)), while allowing for more realis-
tic conditional distributions. From a more practical point of view,
they also simplify the computations by reducing the dimensional-
ity of the optimisation problem at each stage, thereby increasing
the researcher’s confidence that she has not found a local mini-
mum. In this regard, it is worth bearing in mind that most com-
mercially available econometric packages have been fine tuned to
the Gaussian case, which even leads to closed-form estimators in
commonly used models.

The focus of our paper is precisely the econometric analysis of
sequential estimators obtained from the standardised innovations
evaluated at theGaussian PML estimators. Specifically,we consider
not only sequential ML estimators, but also sequential generalised
method of moments (GMM) estimators based on certain functions
of the standardised innovations.

To keep the exposition simple we focus on elliptical distribu-
tions in the text, and relegate more general cases to the supple-
mental Appendix. We illustrate our results with several examples
that nest the normal, including the Student t and some rather flex-
ible families such as scale mixtures of normals and polynomial ex-
pansions of the multivariate normal density, both of which could
form the basis for a proper nonparametric procedure. We explain
how to compute asymptotically valid standard errors of sequen-
tial estimators, assess their efficiency, and obtain the optimal mo-
ment conditions that lead to sequential MM estimators as efficient
as their joint ML counterparts. Although we consider multivariate
conditionally heteroskedastic dynamic regression models, our re-
sults apply in univariate contexts as well as in static ones.

We then analyse the use of our sequential estimators in the
computation of commonly used risk management measures such
as VaR, and recently proposed systemic risk measures such as
Conditional Value at Risk (CoVaR) (see Adrian and Brunnermeier
(2011)). In particular, we compare our sequential estimators to
nonparametric estimators, both when the parametric conditional
distribution is correctly specified and also when it is misspecified.
Our analytical and simulation results indicate that sequential ML
estimators of flexible parametric families of distributions offer
substantial efficiency gains, while incurring in small biases.

Finally, we illustrate our results with data for four Global
Systematically Important Banks from the eurozone. As expected,
we find that their stock returns display considerable non-
normality even after controlling for time-varying volatilities and
correlations, which in turn gives rise to the type of non-linear
dependence that is relevant for systemic risk measurement.

The rest of the paper is as follows. In Section 2, we describe
the model, present the elliptical distributions we use as examples
and introduce a convenient reparametrisation satisfied by most
static and dynamic models. Then, in Section 3 we discuss the

sequential ML and GMM estimators, and compare their efficiency.
In Section 4, we study the effect of those estimators on risk
measures under both correct specification and misspecification,
and derive asymptotically valid standard errors. A Monte Carlo
evaluation of the different parameter estimators and riskmeasures
can be found in Section 5, and the empirical application in
Section 6. Finally, we present our conclusions in Section 7. Proofs
and auxiliary results are gathered in appendices.

2. Theoretical background

2.1. The dynamic econometric model

Discrete time models for financial time series are usually char-
acterised by a parametric dynamic regression model with time-
varying variances and covariances. Typically, the N dependent
variables, yt , are assumed to be generated as:

yt = µt(θ0)+ Σ
1/2
t (θ0)ε

∗

t ,

µt(θ) = µ(zt , It−1; θ), Σt(θ) = Σ(zt , It−1; θ),

where µ() and vech [Σ()] are N × 1 and N(N + 1)/2 × 1 vector
functions known up to the p × 1 vector of true parameter values
θ0, zt are k contemporaneous conditioning variables, It−1 denotes
the information set available at t − 1, which contains past values
of yt and zt , Σ

1/2
t (θ) is some particular ‘‘square root’’ matrix such

that Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ), and ε∗

t is a martingale difference
sequence satisfying E(ε∗

t |zt , It−1; θ0) = 0 and V (ε∗
t |zt , It−1; θ0) =

IN . Hence,

E(yt |zt , It−1; θ0) = µt(θ0), V (yt |zt , It−1; θ0) = Σt(θ0). (1)

To complete the model, we need to specify the conditional
distribution of ε∗

t . We shall initially assume that, conditional on
zt and It−1, ε∗

t is independent and identically distributed as some
particular member of the spherical family with a well defined
density, or ε∗

t |zt , It−1; θ0, η0 ∼ i.i.d. s(0, IN , η0) for short, where
η are q additional shape parameters.

2.2. Elliptical distributions

A spherically symmetric random vector of dimension N , ε∗
t , is

fully characterised in Theorem2.5 of Fang et al. (1990) asε∗
t = etut ,

where ut is uniformly distributed on the unit sphere surface in RN ,
and et is a non-negative random variable independent of ut . The
variables et and ut are referred to as the generating variate and
the uniform base of the spherical distribution. Often, we shall also
use ςt = ε∗′

t ε∗
t , which trivially coincides with e2t . Assuming that

E(e2t ) < ∞, we can standardise ε∗
t by setting E(e2t ) = N , so that

E(ε∗
t ) = 0 and V (ε∗

t ) = IN . If we further assume that E(e4t ) < ∞,
then Mardia’s (1970) coefficient of multivariate excess kurtosis

κ = E(ς2
t )/[N(N + 2)] − 1 (2)

will also be bounded. The most prominent examples are the
standardised multivariate Student t , in which ςt is proportional to
an F random variable with N and ν degrees of freedom, and the
limiting Gaussian case, when ςt becomes a χ2

N . Since this involves
no additional parameters, we identify the normal distributionwith
η0 = 0, while for the Student t we define η as 1/ν, which will
always remain in the finite range [0, 1/2) under our assumptions.
Normality is thus achieved as η → 0 (see Fiorentini et al. (2003)).
Other more flexible families of spherical distributions that we will
also use to illustrate our general results are:
Discrete scale mixture of normals: ε∗

t =
√
ςtut is distributed as a

DSMN if and only if

ςt = [st + (1 − st)~]/[α + (1 − α)~] · ζt
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