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a b s t r a c t

This paper considers the estimation of approximate dynamic factor models when there is temporal
instability in the factor loadings. We characterize the type andmagnitude of instabilities under which the
principal components estimator of the factors is consistent and find that these instabilities can be larger
than earlier theoretical calculations suggest.We also discuss implications of our results for the robustness
of regressions based on the estimated factors and of estimates of the number of factors in the presence
of parameter instability. Simulations calibrated to an empirical application indicate that instability in the
factor loadings has a limited impact on estimation of the factor space and diffusion index forecasting,
whereas estimation of the number of factors is more substantially affected.
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1. Introduction

Dynamic factor models (DFMs) provide a flexible framework
for simultaneously modeling a large number of macroeconomic
time series.1 In a DFM, a potentially large number of observed
time series variables are modeled as depending on a small number
of unobserved factors, which account for the widespread co-
movements of the observed series. Although there is now a large
body of theory for the analysis of high-dimensional DFMs, nearly
all of this theory has been developed for the case in which the
DFM parameters are stable, in particular, in which there are no
changes in the factor loadings (the coefficients on the factors);
among the few exceptions are Stock and Watson (2002, 2009)
and Breitung and Eickmeier (2011). This assumption of parameter
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were introducedbyGeweke (1977), and early low-dimensional applications include
Sargent and Sims (1977), Engle and Watson (1981), Watson and Engle (1983),
Sargent (1989) and Stock and Watson (1989). Work over the past fifteen years has
focused on methods that facilitate the analysis of a large number of time series,
see Forni et al. (2000) and Stock and Watson (2002) for early contributions. For
recent contributions and discussions of this large literature see Bai and Ng (2008),
Eickmeier and Ziegler (2008), Chudik and Pesaran (2011) and Stock and Watson
(2011).

stability is at odds with broad evidence of time variation in
many macroeconomic forecasting relations. Recently, a number
of empirical DFM papers have explicitly allowed for structural
instability, e.g., Banerjee et al. (2008), Stock and Watson (2009),
Eickmeier et al. (2011) and Korobilis (2013). However, theoretical
guidance remains scant.

The goal of this paper is to characterize the type andmagnitude
of parameter instability that can be tolerated by a standard
estimator of the factors, the principal components estimator, in
a DFM when the coefficients of the model are unstable. In so
doing, this paper contributes to a larger debate about how best
to handle the instability that is widespread in macroeconomic
forecasting relations. On the one hand, the conventional wisdom
is that time series forecasts deteriorate when there are undetected
structural breaks or unmodeled time-varying parameters, see for
example Clements and Hendry (1998). This view underlies the
large literatures on the detection of breaks and on models that
incorporate breaks and time variation, for example by modeling
the breaks as following aMarkov process (Hamilton, 1989; Pesaran
et al., 2006). In the context of DFMs, Breitung and Eickmeier (2011)
show that a one-time structural break in the factor loadings has the
effect of introducing new factors, so that estimation of the factors
ignoring the break leads to estimating too many factors.

On the other hand, a few recent papers have provided evidence
that sometimes it can be better to ignore parameter instability
when forecasting. Pesaran and Timmermann (2005) point out that
whether to use pre-break data for estimating an autoregression
trades off an increase in bias against a reduction in estimator vari-
ance, and they supply empirical evidence supporting the use of
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pre-break data for forecasting. Pesaran and Timmermann (2007)
develop tools to help ascertain in practice whether pre-break data
should be used for estimation of single-equation time series fore-
casting models. In DFMs, Stock andWatson (2009) provide an em-
pirical example using US macroeconomic data from 1960–2007 in
which full-sample estimates of the factors are preferable to sub-
sample estimates, despite clear evidence of a break in many factor
loadings around the beginning of the Great Moderation in 1984.

We therefore seek a precise theoretical understanding of the
effect of instability in the factor loadings on the performance of
principal components estimators of the factors. Specifically, we
consider a DFM with N variables observed for T time periods and
r ≪ N factors, where the N × r matrix of dynamic factor loadings
Λ can vary over time. We write this time variation so that Λ at
date t equals its value at date 0, plus a deviation; that is, Λt =

Λ0+hNT ξt . The term ξt is a possibly randomdisturbance, and hNT is
a deterministic scalar sequence in N and T which governs the scale
of the deviation. Using this framework and standard assumptions
in the literature (Bai and Ng, 2002, 2006a), we obtain general
conditions on hNT underwhich the principal components estimates
are mean square consistent for the space spanned by the true
factors. We then specialize these general results to three leading
cases: i.i.d. deviations of Λt from Λ0, randomwalk deviations that
are independent across series, and an arbitrary one-time break that
affects some or all of the series.

For the case in which Λt is a vector of independent random
walks, Stock and Watson (2002) showed that the factor estimates
are consistent if hNT = O(T−1). By using a different method of
proof (which builds on Bai and Ng, 2002), we are able to weaken
this result considerably and show that the estimated factors are
consistent if hNT = o(T−1/2). We further show that, if hNT =

O(1/min{N1/4T 1/2, T 3/4
}), the estimated factors achieve themean

square consistency rate of 1/min{N, T }, a rate initially established
by Bai and Ng (2002) in the case of no time variation. Because the
elements of ξt in the random walk case are themselves Op(t1/2),
this means that deviations in the factor loadings on the order of
op(1) do not break the consistency of the principal components es-
timator. These rates are remarkable: as a comparison, if the factors
were observed so an efficient test for time variation could be per-
formed, the testwould have nontrivial power against randomwalk
deviations in a hNT ∝ T−1 neighborhood of zero (e.g., Stock and
Watson, 1998b) and would have power of one against parameter
deviations of themagnitude tolerated by the principal components
estimator. Intuitively, the reason that the principal components es-
timator can handle such large changes in the coefficients is that, if
these shifts have limited dependence across series, their effect can
be reduced, and eliminated asymptotically, by averaging across se-
ries.

We further provide the rate of mean square consistency as a
function of hNT , both in general and specialized to the random
walk case. The resulting consistency rate function is nonlinear
and reflects the tradeoff between the magnitude of the instability
and, through the relative rate N/T as T increases, the amount of
cross-sectional information that can be used to‘‘average out’’ this
instability. To elaborate on the practical implications of the theory,
we conduct a simulation study calibrated to the Stock andWatson
(2009) dataset. The results confirm that the principal components
estimator and derived diffusion index forecasts are robust to
empirically relevant degrees of temporal instability in the factor
loadings, although the precise quantitative conclusions depend on
the assumed type of structural instability and the persistence of
the factors. Interestingly, the robustness obtains even though the
Bai and Ng (2002) information criterion estimator of the rank of
the factor space appears to be asymptotically biased for some of
our parametrizations.

The rest of the paper proceeds as follows. Section 2 lays out
the model, the assumptions, and the three special cases. Our

main result on consistency of the principal components estimator
is presented in Section 3. Rank selection and diffusion index
forecasting are discussed in Section 4. Section 5 provides Monte
Carlo results, and Section 6 concludes.

2. Model and assumptions

2.1. Basic model and intuition

The model and notation follow Bai and Ng (2002) closely.
Denote the observed data by Xit for i = 1, . . . ,N, t = 1, . . . , T .
It is assumed that the observed series are driven by a small, fixed
number r of unobserved common factors Fpt , p = 1, . . . , r , such
that

Xit = λ′

itFt + eit .

Here λit ∈ Rr is the possibly time-varying factor loading of series
i at time t, Ft = (F1t , . . . , Frt)′, and eit is an idiosyncratic error.
Define vectors Xt = (X1t , . . . , XNt)

′, et = (e1t , . . . , eNt)′, Λt =

(λ1t , . . . , λNt)
′ and data matrices X = (X1, . . . , XT )

′, F = (F1,
. . . , FT )′. The initial factor loadings Λ0 are fixed. We write the
cumulative drift in the parameter loadings as

Λt − Λ0 = hNT ξt ,

where hNT is a deterministic scalar that may depend on N and T ,
while {ξt} is a possibly degenerate random process of dimension
N × r, ξt = (ξ1t , . . . , ξNt)

′ (in fact, it will be allowed to be a
triangular array). Observe that

Xt = ΛtFt + et = Λ0Ft + et + wt , (1)

where wt = hNT ξtFt . Our proof technique will be to treat wt as
another error term in the factor model.2

To establish some intuition for why estimation of the factors
is possible despite structural instability, let the number of factors
be r = 1 and consider an independent randomwalk model for the
time variation in the factor loadings, so that ξit = ξi,t−1+ζit , where
ζit is i.i.d. across i and t with mean 0 and variance σ 2

ζ , and suppose
that Λ0 is known. In addition, we look ahead to Assumption 2 and
assume that Λ′

0Λ0/N → D > 0. Because Λ0 is known, we can
consider the estimator F̂t(Λ0) = (Λ′

0Λ0)
−1Λ′

0Xt . From (1),

F̂t(Λ0) = Ft + (Λ′

0Λ0)
−1Λ′

0et + (Λ′

0Λ0)
−1Λ′

0wt ,

so

F̂t(Λ0) − Ft ≈ D−1N−1
N
i=1

λi0eit + D−1N−1
N
i=1

λi0wit .

The first term does not involve time-varying factor loadings and
under limited cross-sectional dependence it isOp(N−1/2). Using the
definition of wt , the second term can be written

D−1N−1
N
i=1

λi0wit = D−1


hNTN−1

N
i=1

λi0ξit


Ft .

Since Ft is Op(1), this second term is the same order as the
first, Op(N−1/2), if hNTN−1N

i=1 λi0ξit is Op(N−1/2). Under the
independent random walk model, ξit = Op(T 1/2), so

hNTN−1
N
i=1

λi0ξit = Op(hNT (T/N)1/2),

2 As pointed out by our referees, a straightforward approach would be to treat
e∗
t = et + wt as a catch-all error term and provide conditions on hNT and ξt such
that e∗

t satisfies Assumption C in Bai and Ng (2002). Some of the examples below
could be handled this way. However, in the case of random walk factor loadings,
applying the Bai and Ng assumption to e∗

t would restrict the temporal dependence
of ξt more severely than required by our Theorem 1 (cf. Assumption 3.2 below).
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