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a b s t r a c t

We propose and illustrate a Markov-switching multifractal duration (MSMD) model for analysis of inter-
trade durations in financial markets. We establish several of its key properties with emphasis on high
persistence and long memory. Empirical exploration suggests MSMD’s superiority relative to leading
competitors.
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1. Introduction

It is a pleasure to help honor Hashem Pesaran with this paper,
which fits well in the Pesaran tradition of dynamic econometric
modeling in the presence of instabilities. In our case the dynamic
econometric modeling focuses on inter-trade durations in finan-
cial markets (i.e., the times between trades), and the instabilities
are fluctuations in conditionally expected trade arrival intensities,
which are driven by regime-switching components. The general
context, moreover, is financial econometrics, which has concerned
Hashem more in recent years, and it involves extracting informa-
tion from ‘‘Big Data’’, a hallmark ofmuch of Hashem’swork ranging
frommicro (e.g., Pesaran, 2006) tomacro (e.g., Garratt et al., 2012).

Indeed the necessity of grappling with Big Data, and the
desirability of unlocking the information hidden within it, is a key
modern development – arguably the key modern development –
in all the sciences.1 Time-series econometrics, particularly time-
series financial econometrics, is no exception. Big Data in financial
econometrics has both cross-sectional and time-series aspects. In

∗ Corresponding author at: University of Pennsylvania, United States.
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1 For background, see Diebold (2012).

the cross-sectional dimension it arises from the literally hundreds
of thousands of assets that trade in global financial markets. In the
time-series dimension it arises from the similarly huge number of
trades, oftenmany per second, that are now routinely executed for
financial assets in liquid markets. In this paper we are concerned
in general with the time-series dimension, and in particular with
the durations associated with inter-trade arrivals. Those trades
are facilitated by modern hardware, software and algorithms, and
they are continuously recorded electronically. The results are vast
quantities of high-frequency (trade-by-trade) price data.

One might reasonably ask what, precisely, financial econome-
tricians hope to learn from high-frequency trading data. Interest-
ingly, such high-frequency data emerge as largely uninformative
for some objects of interest (e.g., trend, or ‘‘drift’’, in log price), but
highly informative for others (e.g., volatility), an insight traces at
least to Merton (1980). In particular, although precise estimation
of trend benefits greatly from a long calendar span but not from
high-frequency sampling, precise estimation of volatility benefits
immensely from high-frequency sampling.2 Accurate volatility

2 Indeed the mathematical foundation of the modern financial econometrics
‘‘realized volatility’’ literature initiated by Andersen et al. (2001) and Barndorff-
Nielsen and Shephard (2002) is precisely the convergence of empirical quadratic
variation to population quadratic variation as sampling frequency increases.
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Fig. 1. Citigroup duration time series. We show a time-series plot of inter-trade durations between 10:00 am and 4:00 pm during February 1993, measured in seconds and
adjusted for calendar effects. As indicated by the horizontal axis labeling, there were approximately 23,000 trades, and hence approximately 23,000 inter-trade durations.

estimation and forecasting, in turn, are crucial for financial risk
management, asset pricing and portfolio allocation.

In this paper we are not directly interested in volatility; rather,
as mentioned above, we are interested in inter-trade durations.
However, high-frequency data is informative not only for the
properties of volatility, but also for the properties of inter-
trade durations. At one level that observation is trivial, as one
obviously needs trade-by-trade data to infer properties of inter-
trade durations. But at another level the observation is quite deep,
linked to the insight that, via time-deformation arguments in the
tradition of Clark (1973), properties of calendar-time volatility and
transactions-time trade arrivals should be intimately related.

In particular, the time-deformation perspective suggests that
serial correlation in calendar-time volatility is driven by serial
correlation in calendar-time trade counts (i.e., the number of
trades per unit of calendar time, such as an hour or a day). But
serial correlation in calendar-time trade counts is driven by serial
correlation in transactions-time trade-arrival intensity, which is
ultimately driven by serial correlation in the information flow
that drives trading. Hence the calendar-time ‘‘realized volatility’’
persistence revealed by high-frequency data should have parallels
in calendar-time trade count persistence and transaction-time
inter-trade duration persistence. Interestingly, the key and robust
finding for realized volatility is not only high persistence, but
tremendously high persistence, in the formof longmemory.3 Hence
one suspects that long memory should be operative as well in
trade-arrival intensity, yet the duration literature has not featured
long memory prominently.

Against this background, we propose and evaluate a newmodel
of inter-trade durations, closely-linked to the pioneering ‘‘multi-
fractal’’ return volatility model of Mandelbrot et al. (1997), Calvet
and Fisher (2001) and Calvet and Fisher (2004), as extended and
surveyed by Calvet and Fisher (2008) and Calvet and Fisher (2012).
As we will discuss subsequently in detail, our model’s construc-
tion and implications are quite different from existing dynamic
duration models, most notably the prominent autoregressive con-
ditional duration (ACD) model of Engle and Russell (1998) and
variants thereof. Our model, which we call the Markov-switching
multifractal duration (MSMD) model, captures high persistence in
duration clustering; indeed it intrinsically captures long memory
while neverthelessmaintaining covariance stationarity. It also cap-
tures additional important features of observed durations, such as
over-dispersion. Finally, as we will also demonstrate, it is highly
successful empirically.4

We proceed as follows. In Section 2, we review the important
empirical regularities that routinely emerge in inter-trade dura-
tions in financial markets. In Section 3 we develop the MSMD

3 Findings of long memory in realized volatility run consistently from the early
work of Andersen et al. (2001) through scores of subsequent studies, as surveyed
for example in Andersen et al. (2013).
4 After the first version of this paperwaswritten,we learned of contemporaneous

and independent parallel work by Baruník et al. (2012), who use MSMD to study
inter-trade durations in foreign exchange futures markets. Their interesting work
complements ours and buttresses our claim that the MSMD model shows great
empirical promise.

Fig. 2. Citigroup duration distribution.We showanexponential QQplot for Citigroup
inter-trade durations between 10:00 am and 4:00 pm during February 1993,
measured in seconds and adjusted for calendar effects.

model, and we characterize its properties with emphasis on its
consistency with the empirical regularities. In Section 4 we con-
trast MSMD to various competing models. In Section 5 we apply
MSMD to inter-trade duration data for a representative set of US
equities, evaluating its performance in both absolute and relative
terms. We conclude in Section 6.

2. Empirical regularities in inter-trade duration data

Here we highlight three important properties of financial mar-
ket inter-trade durations, illustrating them for a particular US
equity (Citigroup). We shall be interested subsequently in econo-
metric duration models that capture those properties.

The first property of inter-trade durations is serial correlation
in duration dynamics. Durations are highly persistent, as is clear
visually from the time-series plot of Citigroup durations in Fig. 1.5,6

The second property of inter-trade durations, related to their high
persistence, is called over-dispersion. Over-dispersion refers to the
standard deviation exceeding the mean, in contrast to the equality
that would obtain if durations were exponentially distributed. The
exponential is an important benchmark for duration modeling,
because i.i.d. exponential durations arise from time-homogeneous
Poisson processes, as we discuss in greater detail subsequently in
Section 3.1. In Fig. 2we show an exponential durationQ–Q plot for
the Citigroup durations, which clearly indicates a non-exponential
duration distribution characterized by a longer right tail than

5 We have adjusted the durations for calendar effects and will provide details
subsequently in Section 5.1.
6 The transactions-time duration clustering is matched by a corresponding

calendar-time transactions-count clustering (i.e., clustering in the number of trades
per unit of calendar time, such as an hour or a day), but to conserve space we do
not pursue it here. There are, however, many interesting possibilities, including
empirical assessment of moment-scaling laws of the form E[(di+1 +· · ·+di+n)

q
] =

Cqnτ(q)+1 . See, for example, Calvet and Fisher (2012).
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