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a b s t r a c t

This paper proposes a new method for combining forecasts based on complete subset regressions. For a
given set of potential predictor variables we combine forecasts from all possible linear regression models
that keep the number of predictors fixed. We explore how the choice of model complexity, as measured
by the number of included predictor variables, can be used to trade off the bias and variance of the
forecast errors, generating a setup akin to the efficient frontier known from modern portfolio theory.
In an application to predictability of stock returns, we find that combinations of subset regressions can
producemore accurate forecasts than conventional approaches based on equal-weighted forecasts (which
fail to account for the dimensionality of the underlying models), combinations of univariate forecasts, or
forecasts generated by methods such as bagging, ridge regression or Bayesian Model Averaging.
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1. Introduction

Methods for controlling estimation error in forecasting prob-
lems that involve small sample sizes and many potential predictor
variables have been the subject of much recent research.1 One les-
son learned from this literature is that a strategy of including all
possible variables is typically too profligate; given the relatively
short data samples typically available to estimate the parameters
of economic forecasting models, it is important to limit the num-
ber of parameters that have to be estimated or in otherways reduce
the effect of parameter estimation error. This has led to the prepon-
derance of forecast methods such as shrinkage or ridge regression
(Hoerl and Kennard, 1970), model averaging (Bates and Granger,
1969; Raftery et al., 1997), bagging (Breiman, 1996), and the Lasso
(Tibshirani, 1996), which accomplish this in different ways.

This paper proposes a new method for combining forecasts
based on complete subset regressions. For a given set of potential
predictor variables we combine forecasts from all possible linear
regression models that keep the number of predictors fixed. For
example, with K possible predictors, there are K unique univariate
models and nk,K = K !/((K − k)!k!) different k-variate models for
k ≤ K . We refer to the set of models for a fixed value of k as a
complete subset and propose to use equal-weighted combinations
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of the forecasts from all models within these subsets indexed by k.
Moreover, we show that an optimal value of k can be determined
from the covariancematrix of the potential regressors and so lends
itself to being selected recursively in time.

Special cases of subset regression combinations have appeared
in the empirical literature. For example, Rapach et al. (2010) con-
sider equal-weighted combinations of all possible univariate eq-
uity premium models and find that they produce better forecasts
of stock returns than a simple no-predictability model. This corre-
sponds to setting k = 1 in our context. Papers such as Aiolfi and
Favero (2003) consider equal-weighted combinations of forecasts
of stock returns from all possible 2K models. While their combina-
tion scheme is not directly nested by our approach, this can nev-
ertheless be obtained from a combination of the individual subset
regression forecasts.

From a theoretical perspective, we show that subset regression
combinations are akin to a complex version of shrinkage which, in
general, does not reduce to shrinking the Ordinary Least Squares
(OLS) estimates coefficient by coefficient. Rather, the adjustment
to the coefficients depends on all least squares estimates and is a
function of both k, the number of variables included in the model,
and K , the total number of potential predictors. Only in the special
case where the covariance matrix of the predictors is orthonormal
does subset regression reduce to ridge regression or, equivalently,
to a Bayes estimator with a specific prior distribution. For this
special case we derive the exact degree of shrinkage implied by
different values of k and thus formalize how k, the number of
parameters in the conditional mean equation, is equivalent to
other measures of model complexity that have previously been
proposed in the literature.
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We also show that the weights implied by subset regression re-
flect omitted variable bias in a way that can be useful for forecast-
ing. This holds particularly in situations with strongly positively
correlated regressors since the subset regression estimates account
for the omitted predictors.

An attractive property of the proposed method is that, unlike
the ridge estimator and conventional Bayesian estimators, it does
not impose the same amount of shrinkage on each coefficient.
Unlike model selection methods, it also does not assign binary
zero–one weights to the OLS coefficients. Other approaches that
apply flexible weighting to individual predictors include bagging
(Breiman, 1996) which applies differential shrinkage weights to
each coefficient, the adaptive Lasso (Zou, 2006) which applies
variable-specific weights to the individual predictors in a data-
dependent adaptive manner, the Elastic Net (Zou and Hastie,
2005; Zou and Zhang, 2009) which introduces extra parameters
to control the penalty for inclusion of additional variables, and
Bayesian methods such as adaptive Monte Carlo (Lamnisos et al.,
2012).

To illustrate the subset regression approach empirically we
consider, like many previous studies, predictability of US stock
returns. In particular, following Rapach et al. (2010), we study
quarterly data on US stock returns in an application that has 12
potential predictor variables and so generates subset regressions
with k = 1, 2, . . . , 12 predictor variables. We find that subset
regression combinations that use k = 2, 3, or 4 predictors produce
the lowest out-of-sample mean squared error (MSE)-values.
Moreover, these subset models generate superior predictive
accuracy relative to the equal-weighted average computed across
all possible models, a benchmark that is well-known to be difficult
to beat, see Clemen (1989). We also find that the value of k in the
subset regression approach can be chosen recursively (in pseudo
‘‘real time’’) in such amanner that the approach produces forecasts
with lower out-of-sample MSE-values than those produced by
recursive versions of Bayesian Model Averaging, ridge regression,
Lasso, or bagging.

The outline of the paper is as follows. Section 2 introduces
the subset regression approach and characterizes its theoretical
properties, Section 3 presents a Monte Carlo simulation study,
Section 4 conducts the empirical analysis of US stock returns, while
Section 5 concludes.

2. Theoretical results

This section presents the setup for the analysis and derives
theoretical results for the proposed complete subset regression
method.

2.1. Setup

Suppose we are interested in predicting the univariate (scalar)
variable yT+1 using a linear regression model based on observing
K predictors xT ∈ RK , and a history of data, {yt+1, xt}T−1

t=0 . Let
E[xtx′

t ] = ΣX for all t and, without loss of generality, assume that
E[xt ] = 0 for all t . To focus on regressions that include only a
subset of the predictors, define β to be a K × 1 vector with slope
coefficients in the rows representing included regressors and zeros
in the rows of the excluded variables. Let β0 be the pseudo true
value for β , the population value of the projection of y on X , where
y = (y1, . . . , yT ) is a T×1 vector andX = (x0, x1, . . . , xT−1)

′ stacks
the x observations into a T × K matrix. Denote the generalized
inverse of a matrix A by A−. Let Si be a K × K matrix with zeros
everywhere except for ones in the diagonal cells corresponding to
included variables, so that if the [j, j] element of Si is one, the jth
regressor is included, while if this element is zero, the jth regressor
is excluded. Sums over i are sums over all permutations of Si.

We propose an estimation method that uses equal-weighted
combinations of forecasts based on all possiblemodels that include
a particular subset of the predictor variables. Each subset is defined
by the set of regressionmodels that include a fixed (given) number
of regressors, k ≤ K . Specifically, we run the ‘short’ regression of
yt on a particular subset of the regressors, then average the results
across all k dimensional subsets of the regressors to provide an
estimator, β̂ , for forecasting, where k ≤ K . With K regressors
in the full model and k regressors chosen for each of the short
models, there will be subset regressions to average over. In turn,
each regressor gets included a total of nk−1,K−1 times.

As an illustration, consider the univariate case, k = 1, which
has n1,K = K short regressions, each with a single variable. Here
all elements of β̂i are zero except for the least squares estimate of yt
on xit in the ith row. The equal-weighted combination of forecasts
from the individual models is then

ŷT+1 =
1
K

K
i=1

x′

T β̂i. (1)

Following common practice, our analysis assumes quadratic or
mean square error (MSE) loss. For any estimator, we have

E


yT+1 − β̂ ′

T xT
2

= E


yT+1 − β ′

0xT + (β0 − β̂T )
′xT
2

= E

εT+1 + (β0 − β̂T )

′xT
2

= σ 2
ε


1 + T−1σ−2

ε E

T (β̂T − β0)

′xT x′

T (β̂T − β0)

. (2)

Here εT+1 is the residual from the population projection of yT+1
on xT and σ 2

ε is its variance. We concentrate on the last term since
the first term does not depend on β̂ . Hence, we are interested in
examining σ−2

ε E

(β̂T − β)′xT x′

T (β̂T − β)

.

2.2. Complete subset regressions

Subset regression coefficients canbe computed as averages over
least squares estimates of the subset regressions.When the covari-
ates are correlated, the individual regressions will be affected by
omitted variable bias. However, as we next show, the subset re-
gression estimators are themselves approximately a weighted av-
erage of the components of the full regression OLS estimator, β̂OLS.

Theorem 1. Assume that as the sample size gets large β̂OLS →
p β0 for

some β0 and T−1X ′X →
pΣX . Then, for fixed K , the estimator for the

complete subset regression, β̂k,K , can be written as

β̂k,K = Λk,K β̂OLS + op(1),

where

Λk,K ≡
1

nk,K

nk,K
i=1


S ′

iΣXSi
−
(S ′

iΣX ).

A proof of this result is contained in the Appendix.
This result on the relationship between β̂k,K and the OLS esti-

mator makes use of high level assumptions that hold under very
general conditions on the data; see White (2001, Chapter 3) for
a set of sufficient conditions. Effectively, any assumptions on the
model that result in the OLS estimators being consistent for their
population values and asymptotically normal will suffice. For
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