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a b s t r a c t

An efficient method for reliability assessment of structural dynamic systems is proposed. In the proposed
method, the reliability is evaluated by the equivalent extreme value distribution of structural dynamic
systems, where an estimator-corrector scheme based on the principle of maximum entropy with frac-
tional moments as constraints is adopted to derive such distribution. The fractional moments, which
are of paramount importance to the efficiency and accuracy of reliability assessment, can be obtained
by a multidimensional integral. To calculate such an integral, a new approach named unequal weighted
quasi-Monte Carlo Simulation is put forward. In this approach, different strategies for the construction of
unequal positive weights, the rearrangement of sampling points to be integration points and the deter-
mination of required number of points are explored. The integral for the evaluation of fractional moments
is then determined efficiently based on the obtained integration points and the weights straightfor-
wardly. Numerical example is studied to verify the proposed method. The investigations indicate that
the proposed method is of accuracy and efficiency for reliability assessment of structural dynamic sys-
tems, with only a few hundreds of deterministic dynamic response analysis for a practical problem
involving multiple random parameters.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures are often subject to dynamic excitations,
such as wind, sea waves and seismic motions, which inherently
possess random characteristics [32]. On the other hand, the param-
eters of the structure, such as the material properties, the geomet-
rical parameters and the boundary conditions, usually cannot be
determined exactly in practical applications [24]. As a result, the
randomness in both excitations and structural parameters may
lead to considerable fluctuation in structural behaviors. Therefore,
the reliability assessment of structural dynamic systems
considering randomness is of paramount importance for providing
a quantitative basis to ensure the structural safety [25].

Performing a reliability based analysis of structural dynamic sys-
tems is closely related to the determination of the probability that
the structural dynamic response crosses a prescribed threshold for
the first time over a given time interval, which is known as the first

passage problem [29,34,22]. For the evaluation of the first passage
probability, analytical methods, such as the Rice’s formula [29],
can only be used in very special cases and are hence not applicable
to general engineering problems [17]. Alternatively, approximate
methods are developed, i.e. Kolmogorov equation [36], however,
the practical applicability may need prohibitive computational
efforts in the case of complex multiple-degree-of-freedom (MDOF)
structures.

Further, the extreme value distribution (EVD) is intimately
related to the first passage reliability evaluation [7]. Likewise, ana-
lytical approaches, e.g. the formal series solution by Rice [18], and
approximate approaches such as taking the Rayleigh distribution
as the EVD [28] are investigated. Nevertheless, these results are
actually achieved for some particular stochastic dynamic responses
[15]. For a general stochastic process, how to obtain the EVD is still
a difficult problem. Fortunately, the equivalent extreme value
event has been developed recently by Li et al. [26], in which the
correlation information of stochastic dynamic response is inherent.
Through this, the EVD can be formulated and therefore the
reliability can be assessed accordingly.

In this paper, an efficient method is proposed to derive the EVD
for reliability assessment of structural dynamic systems with
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accuracy. In this regard, in Section 2, an estimator-corrector scheme
is developed to capture the EVD by the principle of maximum
entropy, in which the evaluation of fractional moments is involved.
Next, in Section 3, a new approach named unequal weighted quasi-
Monte Carlo Simulation (MCS) is proposed to efficiently obtain the
required fractional moments without loss of accuracy. In such an
approach, the construction of positive unequal weights, the rear-
rangementof samplingpoints tobe integrationpoints and thedeter-
mination of required number of integration points are of great
concern, where different strategies are developed accordingly. In
Section4, numerical example is illustrated to elucidate the proposed
method. Concluding remarks are contained in the final section.

2. Reliability assessment of structural dynamic systems

2.1. The equivalent extreme-value event

The equivalent extreme value event consists of the following
three theorems [26]:

Theorem 1. Suppose U1;U2; . . . ;Um are m random variables. Let
Wmin ¼ min16j6m Uj

� �
, then it goes that

Pr
\m
j¼1

Uj > a
� �( )

¼ Pr Wmin > af g ð1Þ

where Pr denotes the probability for short, a is the threshold.

Theorem 2. Suppose U1;U2; . . . ;Um are m random variables. Let
Wmax ¼ max16j6m Uj

� �
, then it goes that

Pr
[m
j¼1

Uj > a

( )
¼ Pr Wmax > af g ð2Þ

Theorem 3. Suppose Uij; i ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;m are m� n
random variables. Let Wext ¼ max16i6n min16j6m Uij

� �� �
, then it goes

that

Pr
[n
i¼1

\m
j¼1

Uj > a

 !( )
¼ Pr Wext > af g ð3Þ

In Eqs. (1)–(3), Wmin;Wmax and Wext are called the equivalent
extreme value random variables and the corresponding random
event is called the equivalent extreme value event, i.e. Wmin > a.
These theorems have been proved rigorously in Ref. [26]. It is also
worth pointing out that the correlation information of original ran-
dom variables is retained in the equivalent extreme value event.

2.2. Reliability assessment of structural dynamic systems

Generally, it is easy to write the reliability of structural dynamic
systems in the form of limit state function

R ¼ Pr G tð Þ > 0; t 2 0; T½ �f g ð4Þ
where GðtÞ is a time-dependent limit state function, T is the given
time duration.

In fact, GðtÞ is a stochastic process, of which the value at each
time step can be regarded as a random variable. Therefore, Eq.
(4) can be written equivalently in another form such that

R ¼ Pr
\

t2 0;T½ �
G tð Þ > 0

( )
ð5Þ

According to Theorem 1, the equivalent extreme value can be
expressed as

Wmin ¼ mint2 0;T½ � G tð Þð Þ ð6Þ
The reliability in Eq. (5) can be rewritten as

R ¼ Pr Wmin > 0f g ð7Þ
Further, Eq. (7) can be changed as

R ¼
Z 1

0
pWmin

wð Þdw ð8Þ

where pWmin
ðwÞ is the EVD.

Then, the first-passage reliability problem is transformed to be
such a simple one-dimensional integration.

Once the system reliability is interested, which means multiple
limit state functions are involved, there exists

R ¼ Pr
\m
j¼1

G tð Þ > 0; t 2 0; Tj
� �� �( )

ð9Þ

where m is the number of limit state functions and Tj is the time
duration for GjðtÞ.

The equivalent extreme value can be defined as

Wext ¼ min16j6m mint2 0;Tj½ � Gj tð Þ� �� �
ð10Þ

Thus, the reliability can be determined by

R ¼ Pr Wext > 0f g ¼
Z 1

0
pWext

wð Þdw ð11Þ

where pWext
ðwÞ is the EVD for system reliability assessment.

As is seen, the EVD is of paramount importance for reliability
assessment of structural dynamic systems. To this end, the princi-
ple of maximum entropy with fractional moments will be
employed to derive such EVD.

2.3. The principle of maximum entropy based derivation of the
extreme-value distribution with fractional moments

For simplicity, denote the EVD pWmin
ðwÞ or pWext

ðwÞ as pZðzÞ.
According to the information theory, the entropy of a continuous
random variable with distribution pzðzÞ is defined as [21]

H½pzðzÞ� ¼ �
Z
Z
pZ zð Þ log pZ zð Þ½ �dz ð12Þ

A solution of the unknown pZðzÞ can be obtained by using the
principle of maximum entropy, in which the fractional moments
are considered as the constraints. Specifically, we have to solve
the constrained non-linear optimization problem:

Maximize : H pZ zð Þ½ � ¼ � RZ log pZ zð Þ½ �dz

s:t:

Rþ1
�1 pZ zð Þdz ¼ 1
lak ¼ RZ zakpZ zð Þdz

(
for k ¼ 1;2; . . . ;K

8><
>: ð13Þ

where lak is an akth order fractional moment, K is the total number
of fractional moments constraints. As is known from the probability
theory, the probability density function is determined once all the
integer order moments are known if they are finite [38]. The reason
of using fractional moments as constraints is that an ath order
fractional moment contains information about a large number of
integer order moments [39]. Fractional moments begin to be
employed to characterize a random variable from the pioneering
work in Refs. [9,10,12]. If integer moments are applied, a large num-
ber of moments are required to achieve a reasonable accuracy in the
modeling of the distribution tail, where the entropy optimization
algorithm may become numerical instability as the number of
moment constraints becomes large [40].
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