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a b s t r a c t

A system of multivariate semiparametric nonlinear time series models is studied with possible
dependence structures and nonstationarities in the parametric and nonparametric components. The
parametric regressors may be endogenous while the nonparametric regressors are assumed to be
strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric
regressors are nonstationary integrated time series. Semiparametric least squares (SLS) estimation is
considered and its asymptotic properties are derived. Due to endogeneity in the parametric regressors,
SLS is not consistent for the parametric component and a semiparametric instrumental variable (SIV)
method is proposed instead. Under certain regularity conditions, the SIV estimator of the parametric
component is shown to have a limiting normal distribution. The rate of convergence in the parametric
component depends on the properties of the regressors. The conventional

√
n rate may apply even when

nonstationarity is involved in both sets of regressors.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Existing studies show that both nonstationarity and nonlinear-
ity are common features of much economic data. Modeling such
data in away that allows for possible nonstationarity helps to avoid
dependence on stationarity assumptions andmixing conditions for
all of the variables in the system. At present there is a large lit-
erature on parametric linear modeling of nonstationary time se-
ries and interest has primarily focused on time series with a unit
root or near unit root structure (for an overview, see, for exam-
ple Phillips and Xiao, 1998, and the references therein). In prac-
tical work, much attention is given to multivariate systems and
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cointegrationmodels. Inferential methods for these linear systems
include both parametric and semiparametric (e.g., Phillips, 1995,
1998, forthcoming) approaches.

In comparison with work on linear parametric models, there
have been only a few studies of parametric nonlinear models with
integrated variables. Park and Phillips (1988, 1989, 1999, 2001)
introduced techniques for developing asymptotics for certain
classes of nonlinear nonstationary parametric systems and aspects
of this work have been extended by Pötscher (2004), Jeganathan
(2004, 2008), and Berkes and Horváth (2006). Interest has also
developed in nonparametric modeling methods to deal with
nonlinearity of unknown form involving nonstationary variables.
Existing studies in the field of nonparametric autoregression and
cointegration estimation include Phillips and Park (1998), Karlsen
and Tjøstheim (2001), Wang and Phillips (2009a,b), Karlsen
et al. (2007), Kasparis and Phillips (2009), Cai et al. (2009),
Schienle (2009), and Phillips (2009). The last paper examines in a
nonparametric setting spurious time series models of the type for
which the asymptotic theory was given in Phillips (1986, 1998).
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Among nonparametric studies of nonstationarity, two different
mathematical approaches have been developed. In one approach,
a so-called ‘‘Markov splitting technique’’ has been used in Karlsen
and Tjøstheim (2001), and Karlsen et al. (2007) tomodel univariate
time series with a null-recurrent structure; and Chen et al. (2012)
consider univariate semiparametric regression modeling of null-
recurrent time series, in which there is neither endogeneity
nor heteroskedasticity. In the other approach, Phillips and Park
(1998), Phillips (2009), and Wang and Phillips (2009a,b) have
developed ‘local-time’ methods to derive an asymptotic theory
for nonparametric estimation of univariate models involving
integrated time series.

As we explain in detail in the paragraph between Eqs. (2.12)
and (2.13) below, completely nonparametric regression estimation
is limited only to the univariate integrated time series case. In
otherwords, existing studies given in the literature, such as Karlsen
and Tjøstheim (2001), Karlsen et al. (2007), and Wang and Phillips
(2009a,b), for the univariate integrated time series case, may not
be extendable to the multivariate nonstationary regressor case.
This motivates the discussion in the literature for using varying-
coefficient regression models, such as in Cai et al. (2009), and
semiparametric regression models, as proposed in model (1.1)
below, to deal with nonparametric and semiparametric estimation
of multivariate nonstationary regressors. In applied work, such
nonparametric and semiparametric methods have been shown
to be particularly useful in modeling economic data in a way
that retains generality where it is most needed while reducing
dimensionality problems.

The present paper seeks to pursue these advantages in a wider
context that allows for nonstationarities and endogeneities within
a vector semiparametric regression model. The null recurrent
structure of integrated time series typically reduces the amount
of time that such time series spend in the vicinity of any
one point, thereby exacerbating the sparse data problem or
‘‘curse of dimensionality’’ in nonparametric and semiparametric
modeling ofmultivariate integrated time series. On the other hand,
recurrencemeans that nonlinear shape characteristics of unknown
form may be captured over unbounded domains and endogeneity
may be often accommodated without specialized methods (Wang
and Phillips, 2009b).

A common motivation for the use of semiparametric formula-
tions such as (1.1) below is that they reduce nonparametric dimen-
sionality through the presence of a linear parametric component.
In our setting, the time series {(Yt , Xt , Vt) : 1 ≤ t ≤ n} are as-
sumed to be modeled in a system of multivariate nonstationary
time series models the form

Yt = A Xt + g(Vt) + et ,
Xt = H(Vt) + Ut , t = 1, 2, . . . , n,
E[et |Vt ] = E[et ] = 0 and E[Ut |Vt ] = 0, (1.1)

where n is the sample size, A is a p × d-matrix of unknown
parameters, Yt = (yt1, . . . , ytp)′, Xt = (xt1, · · · , xtd)′, and
Vt is a sequence of univariate integrated time series regressors,
g(·) = (g1(·), . . . , gp(·))′ and H(·) = (h1(·), . . . , hd(·))

′2are all
unknown functions, and both et and Ut are vectors of stationary
time series. Note that {Xt} can be stationary when {Xt} and {Vt}

are independent. An extended version of model (1.1) is given in
(2.21) in Section 2.2 below to deal with cases where Xt itself is an
integrated time series regressor.

Model (1.1) corresponds to similar structures that have been
used in the independent case (see Newey et al., 1999; Su and Ullah,

2 F ′(·) denotes transpose of the vector function F(·), and F (i)(·) denotes the i-th
derivative of F(·).

2008). The condition E[et |Vt ] = E[et ] is generally needed to ensure
that themodel is identified. For, if therewere an unknown function
λ(·) such that et = λ(Vt) + εt with E[εt |Vt ] = 0, then only
g(·)+λ(·)would normally be estimable. However, recent research
has revealed that some cases where et is correlated with Vt may
be included. In particular, in studying nonparametric regressions
of the form Yt = g(Vt) + et , Wang and Phillips (2009b) consider
a nonstationary endogenous regressor case where Vt is correlated
with ϵt and show that conventional nonparametric regression is
applicable in spite of the endogeneity. Phillips and Su (2011) show
that the same phenomena holds in cross section cases where there
are continuous location shifts in the regressor, which play the
role of an instrumental variable in tracing out the nonparametric
regression function.

The identification condition E[et |Vt ] = E[et ] = 0 eliminates
endogeneity between ϵt and Vt while retaining endogeneity
between et and Xt and potential nonstationarity in both Xt and
Vt . The condition E[et |Vt ] = E[et ] = 0 in our setting
corresponds to the condition E[et |Vt ,Ut ] = E[et |Ut ] that is
assumed in Newey et al. (1999) and Su and Ullah (2008), the
former being implied by E[et |Vt ] = E (E [et |Ut , Vt ] |Vt) =

E (E [et |Ut ] |Vt) = E (E [et |Ut ]) = E [et ] when Ut is independent
of Vt and E[et ] = 0. The identification conditions in (1.1) allow
for both conditional heteroskedasticity and endogeneity in et ,
permitting et to depend on Ut

3. These conditions are also less
restrictive than the exogeneity condition between et and (Xt , Vt)
that is common in the literature for the stationary case (see, for
example Härdle et al., 2000; Gao, 2007).

The present paper treatsmodel (1.1) as a vector semiparametric
structural model and considers the case where Xt is a vector of
nonstationary regressors and may be endogenous, Vt may be a
univariate integrated regressors and uncorrelated with et . In the
case where endogeneity is involved in semiparametric regression
modeling of independent data, some related developments include
Robinson (1988), Newey et al. (1999), Ai and Chen (2003), Newey
and Powell (2003), Li and Racine (2007), Su and Ullah (2008), and
Florens et al. (2012). While estimation of partially linear models
with endogeneity is discussed in each of these papers, neither the
proposed structures nor the estimation methods may be used to
deal with our case.

The contributions of the paper are as follows. We first consider
a semiparametric least squares (SLS) estimator of A. When there
is endogeneity in Xt , the SLS estimator of A is inconsistent. This
may be seen from model (2.9) below when E


e′
t |Ut


≠ 0.

Accordingly, the paper proposes a semiparametric instrumental
variable least squares (SIV) estimate of A to deal with endogeneity
in Xt and a nonparametric estimator for the function g(·). The SIV
estimator of A is shown to be consistent with a conventional

√
n

rate of convergence in some cases even when Xt is stochastically
nonstationary. This rate arises because nonstationarity in the
regression may be eliminated by means of stochastic detrending.

The semiparametric procedure given here may be used
on a system of nonlinear simultaneous equations with the
following features: (i) nonstationarity and endogeneity in the
parametric regressors; (ii) nonlinearity and nonstationarity in the
nonparametric regressors; and (iii) stationary residuals. As such,
the paper complements existing results on parametric modeling
with endogeneity, nonparametric and semiparametric estimation
of nonlinear time series (such as Fan and Yao, 2003; Gao, 2007),

3 The additive case where et = λ(Ut ) + µt with E[µt |Vt ] = 0 is covered in the
first part of (1.1) because E [et |Vt ] = E [λ(Ut )|Vt ] + E[µt |Vt ] = E [λ(Ut )] = E [et ]
when Ut is independent of Vt . The multiplicative case where et = σ(Ut )νt is also
covered in the first part of (1.1) because E [et |Vt ] = E [σ(Ut )νt |Vt ] = E [et ] when
(Ut , νt ) is assumed to be independent of Vt .
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