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a b s t r a c t

Adaptive combining is generally a desirable approach for forecasting, which, however, has rarely been
explored for discrete response time series. In this paper, we propose an adaptively combined forecasting
method for such discrete response data. We demonstrate in theory that the proposed forecast is of the
desired adaptationwith respect to the widely used squared risk and other significant risk functions under
mild conditions. Furthermore,we study the issue of adaptation for the proposed forecastingmethod in the
presence of model screening that is often useful in applications. Our simulation study and two real-world
data examples show promise for the proposed approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The time series data with discrete response exist widely in
many research fields, including economics, finance, health, and
even sports. For example, Dueker (1999) andMonokroussos (2011)
used this kind of time series to describe the US monetary policy;
Müller and Czado (2005, 2009) utilized it in the study of finan-
cial analysis; Kedem and Fokianos (2002) applied it to modeling
the sleep state of a newborn infant and Akhtar and Scarf (2012)
adopted it for the prediction of match outcomes in test cricket. For
the surveys on early and recent developments of time series mod-
els with discrete responses, the reader is referred to Eckstein and
Wolpin (1989) and Aguirregabiria and Mira (2010), respectively.
Obviously, an accurate forecast for discrete response time series
data is significantly desirable. This paper will be devoted to devel-
oping an effective procedure for combining forecasts in the context
of time series with discrete responses.

As iswell known, different estimation or forecasting procedures
may generally perform well in different cases. However, in prac-
tice, it is often very hard to choose out the best procedure, even
though a large number of model selection approaches exist in the
literature. Furthermore, model selection is often unstable in the
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sense that small change in data may lead to a significant difference
in the chosen models, and thus cause an unnecessarily high vari-
ability in the final estimation/prediction. Therefore, a combination
of candidate procedures is highly desirable. In addition, a combined
forecast avoids ignoring useful information from the relationship
between the response and the covariates and also provides a kind
of insurance against selecting a very poor candidate model. We re-
fer to Bates and Granger (1969), Zou and Yang (2004) and Leung
and Barron (2006), among others, for further discussions.

Various combination methods have been suggested for fore-
casting in the literature. In the classical forecasting combination
(cf., Bates and Granger, 1969; Granger and Ramanathan, 1984),
combining weights are typically selected based on the estimated
variances of individual forecast errors. The resulting combined
forecast by this kind of procedures, however, lacks of theoretical
supports. Combining procedures based on the scores of informa-
tion criteria such as AIC and BIC (Buckland et al., 1997) are also
commonly used in practice, but they need themaximum likelihood
values of all candidate models fitted. Recently, asymptotically op-
timal combining approaches have attracted a lot of attention and
various procedures have been proposed. Examples include Mal-
lows model averaging (MMA) by Hansen (2007, 2008) and Wan
et al. (2010), optimal mean squared error averaging by Liang et al.
(2011), and Jackknifemodel averaging (JMA) byHansen and Racine
(2012). But all the work on asymptotically optimal combining pro-
cedures consider to average the linear estimators. Differently, this

0304-4076/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jeconom.2013.04.019

http://dx.doi.org/10.1016/j.jeconom.2013.04.019
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jeconom.2013.04.019&domain=pdf
mailto:xinyu@amss.ac.cn
http://dx.doi.org/10.1016/j.jeconom.2013.04.019


X. Zhang et al. / Journal of Econometrics 176 (2013) 80–91 81

paper will develop an adaptive combination procedure,1 which is
applicable in amore general framework because it neither restricts
the formof the estimators/forecasts averaged nor requires the like-
lihood values fitted. Also, as pointed out by a referee, any forecast-
ing procedure (e.g., MMA) can be included in the candidate set of
the adaptive combination procedure so that the final risk can adap-
tively achieve minimax rates for multiple scenarios.

In recent literature, adaptive forecasting studies are focused
on continuous random variables. Yang (2004) proposed an adap-
tive algorithm, called aggregated forecast through exponential
reweighting (AFTER). Zou and Yang (2004) used it to combine
time series models (e.g., ARIMA) and indicated the advantage of
AFTER over some commonly used model selection approaches.
Since then, the AFTER algorithm has been applied to a variety of
forecasting issues, such as theUS employment growth (Rapach and
Strauss, 2008) and the exchange rate (Altavilla and De Grauwe,
2010). To the best of our knowledge, however, the adaptive prop-
erty has seldombeen investigated for discrete response time series,
which will be studied in this paper. We will not only establish the
adaptive property of our proposed combination procedure under
usual squared risk, but also demonstrate that the proposed
combined forecast procedure enjoys the adaptation under other
significant general risk functions, including, for example, the asym-
metric LINEX loss function. In addition, we will consider the adap-
tation of the proposed method in the presence of model screening
that is often useful in applications. The advantages of the proposed
approaches will be illustrated by both simulation study and real-
world data examples.

The remainder of this paper is structured as follows. Section 2
begins with the setup of the problem and combined forecast.
Section 3 contains theorems on the adaptation of the proposed
combined forecast based on the squared risk and other important
risk functions. Section 4 further presents its adaptation by adding
a model screening step to the combining procedure. Sections 5
and 6 report results from the simulation study and real-world data
analysis, respectively. Section 7 concludes. The technical proofs are
relegated to an Appendix.

2. Problem setup and combined forecast

Suppose that we are interested in forecasting a discrete re-
sponse variable Y at some time t (=1, 2, . . .), taking on D+1 cate-
gories.We denote byG0 the initial information set available at time
t = 0 and by {Y1, Y2, . . . , Yt−1} the observations of Y at time {1, 2,
. . . , t − 1}. At each time t , Xt denotes the covariates possibly re-
lated to Yt . For t > 0, let Z t−1

=
G0, (X1, Y1), . . . , (Xt−1, Yt−1)


be all the historical information available up to time t − 1, and set
Gt = (Z t−1, Xt). Suppose that, for each time t , the conditional prob-
ability of Yt = d given Gt is modeled by

Pr {Yt = d|Gt} = fd(Gt), d = 0, 1, . . . ,D, (1)

where Dmeans D+ 1 categories for the values of Yt , and fd(·)’s are
unknown probability functions, satisfying

D
d=0 fd(Gt) = 1. Here

D can be larger than 1 and so the response Y does not need to be
binary. The D + 1 values are also allowed to be ordered. Note that

1 The adaptation in the current paper is on minimax-rate adaptation. Referring
to Yang (2001b), we briefly describe the minimax-rate adaptive property here. Let
g ∈ Gθ be the vector of interest, where θ is the hyper-parameter belonging to Θ ,
and {gj,n, n ≥ 1} be a sequence of estimators by the estimation procedure j, j ∈

{1, . . . , J}. The minimax risk in Gθ at n is defined as R(Gθ , n) = inf1≤j≤J supg∈Gθ
E{l(g,gj)}, where l(·, ·) denotes some distance. If the estimation procedure j∗

satisfies lim supn→∞


R−1(Gθ , n) supg∈Gθ

E{l(g,gj∗ )} < ∞ for every θ ∈ Θ , then
we say that the estimation procedure j∗ is minimax-rate adaptive over {Gθ : θ ∈

Θ}. Similar definitions can be found in Barron et al. (1999) and Yang (2000b).

Yt−1 is in Gt , so similar to the AFTER, the algorithmwewill propose
can be used to forecast time series with autoregressive structure.

In this problem of forecasting, the key concern is to forecast
fd(Gt), d = 0, 1, . . . ,D. Suppose we have J candidate forecasting
procedures, based on which we aim to construct a combined fore-
cast with adaptive property. For j = 1, . . . , J , we denotefd,j(Gt)
as the forecast of fd(Gt) by the jth candidate procedure. For sim-
plicity, we writefd,t,j =fd,j(Gt). Unlike the combining procedures
such as the MMA and JMA mentioned in the Introduction, no re-
striction is imposed on the J forecasts in this paper. These fore-
casts are flexible, and can be constructed from different classes of
methods and/or under different assumptions. The combined fore-
cast that we propose is in the form

fd(Gt , wt) =

J
j=1

wt,jfd,t,j (2)

with the weight vector wt = (wt,1, . . . , wt,J)
′ and its jth element

given by

wt,j =



πj, t = 1,

πj

t−1
l=1


D

d=0

fd,l,jI(Yl=d)


J
j′=1


πj′

t−1
l=1


D

d=0

fd,l,j′I(Yl=d)
 , t > 1, (3)

where πj > 0 is the prior weight given to the jth forecast, satisfy-
ing

J
j=1 πj = 1, and I(·) denotes the indicator function as usual.

For simplicity, we writefd(wt) =fd(Gt , wt).
Note that the weight in (3) depends on the prior information,

the past forecasts and the corresponding actual realizations. In
particular, such weights are dynamic, i.e., they are updated with
a new observation. Ignoring the prior information, we see that the
bigger the value of

t−1
l=1

D
d=0

fd,l,jI(Yl=d)

, the larger theweight

wt,j. This value is the probability of making totally correct choice
before time t , and thus can be thought of as a measure of the past
forecasting accuracy from time 1 to time t − 1. Therefore, the
proposed weights are related to both the past forecasting accuracy
and the prior information. Obviously, if the priorweights are equal,
then the proposed approach sets a bigger weight to the procedure
with higher forecasting accuracy in the past time, which accords to
our intuition. Also note that by (3), we have

wt,j =

wt−1,j

D
d=0

fd,t−1,j
I(Yt−1=d)

J
j′=1


wt−1,j′

D
d=0

fd,t−1,j′
I(Yt−1=d)

 . (4)

So similar to the AFTER procedure, the weight of form (3) has a
Bayesian interpretation as well: If we view the weight wt−1,j as
the prior probability put on the jth forecast before observing Yt−1,
thenwt,j is the posterior probability of the jth forecast after Yt−1 is
obtained.

In the case of combining binary predictions, Yuan and Ghosh
(2008) and Ghosh and Yuan (2009) developed procedures for
adaptive regression by mixing with model screening (ARMS) and
improved ARMS by extending theworks of Yang (2001a, 2003) and
Yuan and Yang (2005). The form of our weighting scheme in (3)
is similar to those in these papers, but the latter depends on data
splitting and is not suitable for forecasting time series. Our weight
form (3) is also similar to theweight implied by themixing strategy
for density estimation in Yang (2000a), where the adaptation of the
mixing strategy is shown under Kullback–Leibler (K–L) risk. We
will present this result in Remark 4 as a support of using (3) for
combining procedures.
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