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a b s t r a c t

Standard inference in cointegrating models is fragile because it relies on an assumption of an I(1)
model for the common stochastic trends, which may not accurately describe the data’s persistence. This
paper considers low-frequency tests about cointegrating vectors under a range of restrictions on the
common stochastic trends. We quantify howmuch power can potentially be gained by exploiting correct
restrictions, as well as the magnitude of size distortions if such restrictions are imposed erroneously.
A simple test motivated by the analysis in Wright (2000) is developed and shown to be approximately
optimal for inference about a single cointegrating vector in the unrestricted stochastic trend model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental insight of cointegration is thatwhile economic
time seriesmay be individually highly persistent, some linear com-
binations are much less persistent. Accordingly, a suite of practi-
cal methods have been developed for conducting inference about
cointegrating vectors, the coefficients that lead to this reduction
in persistence. In their standard form, these methods assume that
the persistence is the result of common I(1) stochastic trends,1 and
their statistical properties crucially depend on particular charac-
teristics of I(1) processes. But in many applications there is uncer-
tainty about the correct model for the persistence which cannot be
resolved by examination of the data, rendering standard inference
potentially fragile. This paper studies efficient inference methods
for cointegrating vectors that is robust to this fragility.

We do this using a transformation of the data that focuses on
low-frequency variability and covariability. This transformation
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1 See, for instance, Johansen (1988), Phillips and Hansen (1990), Saikkonen
(1991), Park (1992) and Stock and Watson (1993).

has two distinct advantages. First, as we have argued elsewhere
(Müller and Watson, 2008), persistence (‘‘trending behavior’’)
and lack of persistence (‘‘non-trending, I(0) behavior’’) are low-
frequency characteristics, and attempts to utilize high-frequency
variability to learn about low-frequency variability are fraught
with their own fragilities.2 Low-frequency transformations elim-
inate these fragilities by focusing attention on the features of the
data that are of direct interest for questions relating to persistence.
In particular, as in Müller and Watson (2008), we suggest focus-
ing on below business cycle frequencies, so that the implied def-
inition of cointegration is that error correction terms have a flat
spectrum below business cycle frequencies. The second advantage
is an important by-product of discarding high frequency variabil-
ity. The major technical challenge when conducting robust infer-
ence about cointegrating vectors is to control size over the range of
plausible processes characterizing the model’s stochastic common
trends. Restricting attention to low frequencies greatly reduces the
dimensionality of this challenge.

The potential impact of non-I(1) stochastic trends on standard
cointegration inference has long been recognized. Elliott (1998)
provides a dramatic demonstration of the fragility of standard
cointegration methods by showing that they fail to control size

2 Perhaps the most well-known example of this fragility involves estimation of
HAC standard errors, see Newey and West (1987), Andrews (1991), den Haan and
Levin (1997), Kiefer et al. (2000), Kiefer and Vogelsang (2005), Müller (2007) and
Sun et al. (2008).
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when the common stochastic trends are not I(1), but rather are
‘‘local-to-unity’’ in the sense of Bobkoski (1983), Cavanagh (1985),
Chan and Wei (1987) and Phillips (1987).3 In a bivariate model,
Cavanagh et al. (1995) propose several procedures to adjust critical
values from standard tests to control size over a range of values
of the local-to-unity parameter, and their general approach has
been used by several other researchers; Campbell and Yogo (2006)
provides a recent example. Stock and Watson (1996), Jansson and
Moreira (2006) and Elliott et al. (2012) go further and develop
inference procedures with specific optimality properties in the
local-to-unity model.

An alternative generalization of the I(0) and I(1) dichotomy
is based on the fractionally integrated model I(d), where d is not
restricted to take on integer values (see, for instance, Baillie, 1996
or Robinson, 2003 for introductions). Fractional cointegration is
then defined by the existence of a linear combination that leads to a
reduction of the fractional parameter. A well-developed literature
has studied inference in this framework: see, for instance, Velasco
(2003), Robinson and Marinucci (2001, 2003); Robinson and
Hualde (2003) and Chen and Hurvich (2003a,b, 2006). As in the
local-to-unity embedding, however, the low-frequency variability
of the common stochastic trends is still governed by a single
parameter, since (suitably scaled) fractionally integrated series
converge to fractional Brownian motions, which are only indexed
by d. In contrast to the local-to-unity framework, this decisive
parameter can be consistently estimated, so that the uncertainty
about the exact nature of the stochastic trend vanishes in this
fractional framework, at least under the usual asymptotics.

Yet, Müller and Watson (2008) demonstrate that relying on
below business cycle variation, it is a hopeless endeavor to
try to consistently discriminate between, say, local-to-unity and
fractionally integrated stochastic processes from data spanning
50 years. Similarly, CliveGranger discusses awide range of possible
data generating processes beyond the I(1)model in his Frank
Paish Lecture (Granger, 1993) and argues, sensibly in our opinion,
that it is fruitless to attempt to identify the exact nature of the
persistence using the limited information in typical macro time
series. While local-to-unity and fractional processes generalize
the assumption of I(1) trends, they do so in a very specific way,
leading to worries about the potential fragility of these methods to
alternative specifications of the stochastic trend.

As demonstrated byWright (2000), it is nevertheless possible to
conduct inference about a cointegrating vectorwithout knowledge
about the precise nature of the common stochastic trends.Wright’s
idea is to use the I(0) property of the error correction term as
the identifying property of the true cointegrating vector, so that
a stationarity test of the model’s putative error correction term
is used to conduct inference about the value of the cointegrating
vectors. Because the common stochastic trends drop out under
the null hypothesis, Wright’s procedure is robust in the sense
that it controls size under any model for the common stochastic
trend. But the procedure ignores the data beyond the putative error
correction term, and is thus potentially quite inefficient.

Section 2 of this paper provides a formulation of the cointe-
grated model in which the common stochastic trends follow a
flexible limiting Gaussian process that includes the I(1), local-
to-unity, and fractional/long-memory models as special cases.
Section 3 discusses the low-frequency transformation of the coin-
tegrated model. Throughout the paper, inference procedures are
studied in the context of this general formulation of the cointe-
grated model. The price to pay for this generality is that it in-
troduces a potentially large number of nuisance parameters that
characterize the properties of the stochastic trends and the rela-
tionship between the stochastic trends and the model’s I(0) com-
ponents. In our framework, none of these nuisance parameters can

3 Also see Elliott and Stock (1994) and Jeganathan (1997).

be estimated consistently. The main challenge of this paper is thus
to study efficient tests in the presence of nuisance parameters un-
der the null hypothesis, and Sections 4–6 address this issue.

Using this framework, the paper then makes six contributions.
The first is to derive lower bounds on size distortions associated
with trend specifications that are more general than those main-
tained under a test’s null hypothesis. For example, for tests con-
structed under a maintained hypothesis that the stochastic trends
follow an I(1) process, we construct lower bounds on the test’s size
when the stochastic trends follow a local-to-unity or more general
stochastic process. Importantly, these bounds are computednot for
a specific test, but rather for any test with a pre-specified power.
The paper’s second contribution is an upper bound on the power
for any test that satisfies a pre-specified rejection frequency under
a null thatmay be characterized by a vector of nuisance parameters
(here the parameters that characterize the stochastic trend pro-
cess). The third contribution is implementation of a computational
algorithm that allows us to compute an approximation to the low-
est upper power bound and, when the number of nuisance param-
eters is small, a feasible test that approximately achieves the power
bound.4 Taken together these results allow us to quantify both the
power gains associatedwith exploiting restrictions associatedwith
specific stochastic trend processes (for example, the power gains
associated with the specializing the local-to-unity process to the
I(1) process), and the size distortions associated with these power
gains when the stochastic trend restrictions do not hold. Said dif-
ferently, these results allow us to quantify the benefits (in terms
of power) and costs (in terms of potential size distortions) associ-
ated with restrictions on the stochastic process characterizing the
stochastic trend. Section 4 derives these size and power bounds in
a general framework, and Section 5 computes them for our cointe-
gration testing problem.

The fourth contribution of the paper takes up Wright’s in-
sight and develops efficient tests based only on the putative error-
correction terms. We show that these tests have a particularly
simple form when the alternative hypothesis restricts the model’s
stochastic trends to be I(1). The fifth contribution of the paper is to
quantify the power loss associated with restricting tests to those
that use only the error-correction terms rather than all of the data.
This analysis shows that, in the case of single cointegration vec-
tor, a simple-to-compute test based only on the error-correction
terms essentially achieves the full-data power bound for a general
stochastic trend process, and is thus the efficient test. These results
are developed in Section 6.

The paper’s sixth contribution is empirical. We study the post-
WWII behavior of long-term and short-term interest rates in the
United States. While the levels of the interest rates are highly
persistent, a suitably chosen linear combination of them is not, and
we ask whether this linear combination corresponds to the term
spread, the simple difference between long and short rates. More
specifically we test whether the cointegrating coefficient linking
long rates and short rates is equal to unity. This value cannot be
rejected using a standard efficient I(1) test (Wald or LR versions of
Johansen’s (1991) test), and we show that this result continues to
hold under a general trend process. Of course, other values of the
cointegrating coefficient are possible both in theory and in thedata,
andwe construct a confidence set for the value of the cointegrating
coefficient allowing for a general trend process and compare it to
the confidence set constructed using standard I(1)methods. These
results are presented in Section 7.

2. Model

Let pt , t = 1, . . . , T denote the n × 1 vector of variables un-
der study. This section outlines a time domain representation of

4 The second and third contributions are applications of general results from a
companion paper, Elliott et al. (2012), applied to the cointegration testing problem
of this paper.
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