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a b s t r a c t

The past decade witnessed a literature onmodel averaging by frequentist methods. For the most part, the
asymptotic optimality of various existing frequentist model averaging estimators has been established
under i.i.d. errors. Recently, Hansen and Racine [Hansen, B.E., Racine, J., 2012. Jackknife model averaging.
Journal of Econometrics 167, 38–46] developed a jackknife model averaging (JMA) estimator, which has
an important advantage over its competitors in that it achieves the lowest possible asymptotic squared
error under heteroscedastic errors. In this paper, we broaden Hansen and Racine’s scope of analysis to
encompassmodelswith (i) a non-diagonal error covariance structure, and (ii) lagged dependent variables,
thus allowing for dependent data. We show that under these set-ups, the JMA estimator is asymptotically
optimal by a criterion equivalent to that used by Hansen and Racine. A Monte Carlo study demonstrates
the finite sample performance of the JMA estimator in a variety of model settings.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Model averaging is an alternative to model selection. While
model selection attempts to find a single best model for the
given purpose, model averaging compromises across the compet-
ing models, thus providing a kind of insurance against selecting
a very poor model. Model averaging has long been a popular ap-
proach within the Bayesian paradigm. In recent years, frequentist
model averaging (FMA) has also made substantial grounds. Contri-
butions to model averaging from a fully-fledged frequentist stand-
point were made by Buckland et al. (1997), Yang (2001), Hjort
and Claeskens (2003, 2006), Yuan and Yang (2005), Hansen (2007,
2008), Goldenshluger (2009), Schomaker et al. (2010), Wan et al.
(2010), Liang et al. (2011), Zhang and Liang (2011), Zhang et al.
(2012), among others. The majority of these studies emphasize
model weights determination, inference based on model averag-
ing, and asymptotic efficiency and finite sample properties of FMA
estimators under a variety of model settings. Useful surveys of this
rapidly expanding body of literature are given in Claeskens and
Hjort (2008) andWang et al. (2009). There is also an emerging em-
pirical literature that employs FMA in applied settings (Kapetanios
et al., 2008a,b; Pesaran et al., 2009; Wan and Zhang, 2009).
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In a recent article, Hansen and Racine (2012) (hereafter re-
ferred to as HR, 2012) developed a jackknife model averaging
(JMA) estimator that selects model weights byminimizing a cross-
validation criterion. One major advantage of the JMA estimator is
that the asymptotic optimality theory developed for it allows for
heteroscedasticity in the errors, whereas those developed for other
existing FMA schemes virtually all assume i.i.d. errors. HR (2012)
showed that the JMA estimator has the smallest asymptotic ex-
pected squared errors relative to a large class of linear estimators
constructed from a countable set of weights, including the least
squares, ridge, Nadaraya–Watson and local polynomial kernelwith
fixed bandwidths, spline and some other nonparametric estima-
tors. HR’s (2012) Monte Carlo results also suggest that the JMA
estimator is generally preferred to several other model selection
and averaging estimators; in particular, when the errors are het-
eroscedastic, the JMA estimator significantly outperforms theMal-
lowsmodel average (MMA) estimator developed byHansen (2007)
inmean squared error (MSE) terms in a large part of the parameter
space. In view of these merits of the JMA estimator, more investi-
gations into its properties are warranted.

Although HR’s (2012) model set-up admits heteroscedastic er-
rors, it rules out serial correlations in the errors. Their set-up also
assumes complete exogeneity of regressors. An interesting ques-
tion iswhether the JMAestimator remainsmeritorious under other
settings, particularly in models that admit dependent data. The
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current paper takes steps in this direction by enlarging HR’s scope
of analysis to include two other commonly encountered model
settings, both involving dependent data. The first setting retains
the regressor exogeneity assumption as in HR but admits a non-
diagonal covariance structure in the errors, thus allowing for error
processes such as ARMA and GARCH in addition to pure het-
eroscedastic and i.i.d. processes; it also nests the model of HR as a
special case. The second setting allows for lagged dependent vari-
ables but assumes that the errors are i.i.d. Although neither of these
twomodel settings is more general than the other, they both allow
dependent data, a property not shared by the model examined in
HR.We prove that the JMA estimator when applied to these model
settings achieves an asymptotic optimality criterion equivalent to
that under themodel set-up of HR. Our theoretical analysis follows
the approach ofWan et al. (2010) by allowing themodelweights to
be continuous. This is unlike the method of HR which follows that
of Hansen (2007) by restricting the weights to a discrete set. We
consider the extension from discrete to continuous weighting an
advance as the latter has obvious appeal. It is instructive to point
out that the conditions required for optimality by our method are
neither stronger nor weaker than those required by HR’s method.
Like the latter method, ourmethod also allows for an infinite num-
ber of models. Detailed comparisons of the technical conditions
that underpin our theoretical results and those of HR are provided
in Sections 2.2 and 2.3. For our second model setting that involves
lagged dependent variables, we prove the asymptotic optimality of
the JMA estimator using results in Ing and Wei (2003).

In a Monte Carlo study we also compare the finite sample per-
formance of the JMA estimator with several other estimators, in-
cluding the MMA, leave-one-out cross-validation, and AIC and BIC
model selection estimators under the two model set-ups consid-
ered. OurMonte Carlo results suggest that under strictly exogenous
regressors and ARMA and GARCH-type errors, the JMA estimator is
frequently preferred to these alternative estimators. On the other
hand, when the regressors are not strictly exogenous but contain
lagged dependent variables, the JMA estimator has comparable ef-
ficiency to the MMA estimator. The latter estimator is known to
exhibit performance superiority in many settings (Hansen, 2007,
2008).

The plan of this paper is as follows. In Section 2 we examine
the JMA criterion and present results on the asymptotic optimality
of the JMA estimator under a setting that assumes exogeneity of
regressors but allows for both serial correlation and heteroscedas-
ticity. While the main theorem in this section is applicable to gen-
eral linear estimators, a special focus of discussion will be given to
least squares estimation in the linear regression model. Section 3
examines the case of an infinite order linear autoregressive (AR)
data generating process, and JMA being performed across models
containing lagged dependent variables and possibly other regres-
sors. Section 4 reports results of the Monte Carlo study. Section 5
concludes, and proofs of theorems are contained in Appendix.

2. Jackknife model averaging under a non-diagonal error
covariance structure

2.1. Model framework and the jackknife criterion

We follow HR’s (2012) notations as much as possible for read-
ers’ convenience. Wherever appropriate we point out the differ-
ences in the two set-ups. Consider the data generating process
(DGP)

yi = µi + ei = f (xi)+ ei, i = 1, . . . , n, (1)

with xi = (xi1, xi2, . . .) being countably infinite, and f (·) a func-
tion with respect to xi. Write y = (y1, . . . , yn)′, X = (x′

1, . . . , x
′
n)

′,
µ = (µ1, . . . , µn)

′, and e = (e1, . . . , en)′. Further, assume that

E(e|X) = 0 so that µ = E(y|X), and denote Var(e|X) = Ω , where
Ω is a positive definite symmetric matrix.

LetMn be the number of candidatemodels in themodel average,
and

µ1, . . . ,µMn

be a set of linear estimators of µ such that the

mth estimator in the set, i.e., the estimator of µ in the mth model,
may be written as µm

= Pmy, where Pm is dependent on X but
not on y. Many well-known estimators including the least squares,
ridge, nearest neighbors, and spline aremembers of this class. Now,
letw = (w1, . . . , wMn)′ be a weight vector in the continuous set:

Hn =


w ∈ [0, 1]Mn :

Mn
m=1

wm
= 1


.

The model averaging estimator of µ is obtained by compromising
across the linear estimators {µ1, . . . ,µMn} in the model space. It
has the form

µ(w) =

Mn
m=1

wmµm
=

Mn
m=1

wmPmy ≡ P(w)y. (2)

The above set-up is the same as that of HR (2012) except for the
following aspects. First, HR (2012) restricted Ω to be a diagonal
matrix, but we permit Ω to be non-diagonal, thus allowing the
errors to be both autocorrelated and heteroscedastic. This also
allows y to be dependent when the design matrix X is assumed
fixed. Second, although HR (2012) defined µ(w) as in (2), when
proving the asymptotic optimality of the JMA estimator, they
restricted Hn to the subset H∗

n , which consists of the discrete
weights wm from the set {0, 1/N, 2/N, . . . , 1} for some positive
integer N . We do not impose the same restriction in our analysis.

Denote µ̃m as the estimator of µ when jackknife estimation
based on the delete-one cross-validation is used. Write µ̃m

=

(µ̃m
1 , . . . , µ̃

m
n )

′, where µ̃m
i is the estimator of µi obtained with the

ith observation (yi, xi) removed from the sample. Thus, we can
write µ̃m

= P̃my, where P̃m has zeros on the diagonal and depends
only on X . The model averaging estimator that smooths across the
Mn jackknife estimators is thus

µ̃(w) =

Mn
m=1

wmµ̃m
=

Mn
m=1

wmP̃my ≡ P̃(w)y. (3)

HR (2012) adopted the following squared error loss criterion for
choosing the weight vectorw:

CVn(w) = ∥y − µ̃(w)∥2, (4)

where ∥a∥2
= a′a. Now, let w = argminw∈Hn CVn(w) be the

weight vector that minimizes CVn(w). The JMA estimator of µ
is µ(w). It is obtained by substituting w for w in (2). Thus, the
JMA estimator is a weighted average of the linear estimatorsµm’s
using w as weight. It is different from the estimator µ̃(w) which
combines the jackknife estimators µ̃m’s.

Denote ẽm = y − µ̃m and ẽ = (ẽ1, . . . , ẽMn). Then we can write

CVn(w) = w′ẽ′ẽw, (5)

a quadratic function of w. Thus, the minimization of CVn(w) with
respect to w is a quadratic programming problem. Numerous
software packages are available for obtaining a solution to this
problem (e.g., Matlab and R), and they generally work effectively
and efficiently even whenMn is large; for example, when n = 200
and Mn = 100, it takes only 0.15 s to obtain the solution to (5) by
Matlab.

A referee pointed out that one could consider block cross-
validation as an alternative to delete-one cross-validation. Al-
though traditionally the choice of block lengths has been an
issue, recent advances in automated methods (e.g., Politis and
White, 2004; Patton et al., 2009) have made the selection of op-
timal block length practically feasible. Racine (1997) also showed
that the amount of calculations needed for deleting a block can
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