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a b s t r a c t

The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample
moments related to panel data models with large n. The results allow for the data to be cross sectionally
dependent, while at the same time allowing the regressors to be only sequentially rather than strictly
exogenous. The setup is sufficiently general to accommodate situationswhere cross sectional dependence
stems from spatial interactions and/or from the presence of common factors. The latter leads to the need
for random norming. The limit theorem for sample moments is derived by showing that the moment
conditions can be recast such that a martingale difference array central limit theorem can be applied.
We prove such a central limit theorem by first extending results for stable convergence in Hall and
Heyde (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by
establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without
imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML)
estimators that can be analyzed using our CLT.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paperwe develop a central limit theory for data setswith
cross-sectional dependence. Importantly, the theory is sufficiently
general to cover panel data sets, allowing the data to be cross sec-
tionally dependent, while at the same time allowing for regressors
that are only sequentially (rather than strictly) exogenous. The pa-
per considers cases where the time series dimension T is fixed. Our
results also cover purely cross-sectional data sets.

At the center of our results lies a cross-sectional conditional
moment restriction that avoids the assumption of cross-sectional
independence. The paper proves a central limit theorem for
the corresponding sample moment vector by extending results
of Hall and Heyde (1980) for stable convergence of martingale
difference arrays to a situation of non-nested information sets
arising in cross-sections and panel data sets. We then show that by
judiciously constructing information sets in a way that preserves
a martingale structure for the moment vector in the cross-section
our martingale array central limit theorem is applicable to cross-
sectionally dependent panel and spatial models.

The classical literature on dynamic panel data has generally
assumed that the observations, including observations on the
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exogenous variables, which were predominantly treated as se-
quentially exogenous, are cross sectionally independent. The as-
sumption of cross sectional independencewill be satisfied inmany
settings where the cross sectional units correspond to individuals,
firms, etc., and decisions are not interdependent or when depen-
dent units are sampled at random as discussed in Andrews (2005).
However in many other settings the assumption of cross-sectional
independence may be violated. Examples where it seems appro-
priate to allow for cross sectional dependence in the exogenous
variables may be situations where regressors constitute weighted
averages of data that include neighboring units (as is common in
spatial analysis or in social interaction models), situations where
the cross sectional units refer to counties, states, countries or in-
dustries, and situations where random sampling from the popula-
tion is not feasible.

A popular approach to model cross sectional dependence is
through common factors; see, e.g., Phillips and Sul (2007), Bai
and Ng (2006a,b), Pesaran (2006), and Andrews (2005) for recent
contributions. This represents an important class of models, how-
ever they are not geared towards modeling cross sectional inter-
actions.2 Our approach allows for factor structures in addition to

2 Bai and Ng (2006a,b) allow for cross sectional correlation in the idiosyncratic
disturbances, but assume that the disturbance process is independent of the factors
and loadings. The setups considered in the other papers imply that the observations
are independent in the cross sectional dimension conditional on the common
factors.
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general, unmodeled (through covariates) cross-sectional depen-
dence of the observed sample. Using the GMM estimator for a lin-
ear panel model as an example, we illustrate that conventional
inferencemethods remain valid under the conditions of our central
limit theory when samples are not i.i.d. in the cross-section. These
results extend findings inAndrews (2005) to situationswhere sam-
ples are not i.i.d. even after conditioning on a common factor. Given
that our assumptions allow for factor structures, our limit theory
involves and accommodates random norming. Technically this is
achieved by establishing stable convergence and not just conver-
gence in distribution for the underlying vector of samplemoments.
We prove a martingale central limit theorem for stable conver-
gence by extending results of Hall and Heyde (1980) to allow for
non-nested σ -fields that naturally arise in our setting.

Another popular approach tomodel cross sectional dependence
is to allow for spatial interactions in terms of spatial lags as is
done in Cliff and Ord (1981) type models. Dynamic panel data
models with spatial interactions have recently been considered
by, e.g., Mutl (2006), and Yu et al. (2008, 2012). All of those
papers assume that the exogenous variables are fixed constants
and thus maintain strict exogeneity. The methodology developed
in this paper should be helpful in developing estimation theory for
Cliff–Ord type spatial dynamic panel datamodelswith sequentially
exogenous regressors.

While some of the classical literature on dynamic panel data
models allowed for cross sectional correlation in the exogenous
variables, this was, to the best of our knowledge, always combined
with the assumption that the exogenous variables are strictly
exogenous. This may stem from the fact that strict exogeneity
conveniently allows the use of limit theorems conditional on all of
the exogenous variables. There are many important cases where
the strict exogeneity assumption does not hold, and regressors,
apart from time-lagged endogenous variables, or other potential
instruments are only sequentially exogenous. Examples given by
Keane and Runkle (1992) include rational expectations models or
models with predetermined choice variables as regressors. Other
examples are the effects of children on the labor force participation
of women considered by Arellano and Honoré (2001, p. 3237) or
the relationship between patents and R&D expenditure studied
by Hausman et al. (1984); see, e.g., Wooldridge (1997) for further
commentary on strict vs. sequential exogeneity.

Motivated by the above, themain aim of our paper is to develop
a general central limit theory for sample moments of a panel
data set, where we allow for cross sectional dependence in the
explanatory variables and disturbances (and thus in the dependent
variable), while allowing for some of the explanatory variables to
be sequentially exogenous. The setup will be sufficiently general
to accommodate cross sectional dependence due to common
factors and/or spatial interactions, both of which can affect the
covariates. Our results are different from central limit theorems for
spatial process such as Bolthausen (1982) and Jenish and Prucha
(2009, 2012) because we do not impose a spatial structure on the
cross-sectional dimension of the panel. As a result the high level
conditions that need to be checked to apply our CLT are relatively
simple compared to the spatial CLTs. On the other hand, the
conditional moment restrictions we impose are often synonymous
with correct specification of an underlying model which may not
be required by CLTs for mixing processes as in Bolthausen (1982).

The paper is organized as follows. In Section 2 we formulate
the moment conditions, and give our basic result concerning
the limiting distribution of the normalized sample moments. The
analysis establishes not only convergence in distribution but stable
convergence. In Section 3 we illustrate how the central limit
theory can be applied to efficient GMM estimators for linear
panel models. We derive their limiting distribution, and give a
consistent estimator for the limiting variance covariancematrix. In

Section 4 we present regularity conditions for a class of maximum
likelihood estimators (MLE) and show how our CLT can be applied.
We give examples of specific multinomial choice models that fit
our framework. Concluding remarks are given in Section 5. Basic
results regarding stable convergence as well as all proofs are
relegated to the appendices.

2. Central limit theory

2.1. Moment conditions

In the following we develop a central limit theory (CLT) for a
vector of sample moments for panel data where n and T denote
the cross section and time dimension, respectively. For the CLT
developed in this section we assume that sample averages are
taken over n, with n tending to infinity and T fixed. We allow for
purely cross-sectional data sets by allowing for T = 1 in the CLT.
However, this condition may need to be strengthened to T > T0
for some T0 > 1 for specific models and data transformations.

Our basic central limit theorem is stated for averages

ψ(n) = n−1/2
n

i=1

ψi, (1)

over the cross-section of p × 1 random vectors ψi = (ψ ′

i1, . . . ,

ψ ′

iT )
′.3 The dimension of the sub-vectors ψit is pt × 1 and thus

allowed to depend on t . The index i is an identifier for a particular
unit, where units could be individuals, firms, industries, counties,
etc. While units may refer to geographic entities, no spatial
structure is explicitly imposed onψi. On the other hand, the index
t is given the conventional notion of sequential time.

In introducing our basic CLT the aim is to provide a convenient
module that can be readily used to establish, in particular, a CLT for
the sample moment vector associated with GMM estimators and
the score of the log-likelihood function of ML estimators. For GMM
estimators ψit will typically refer to the, say, pt sample moments
between a vector of instruments and some basic disturbances for
unit i in period t . For ML estimation ψit will typically refer to the
score of the log likelihood function corresponding to unit i and
period t , with pt = d, the dimension of the parameter vector of
interest. In the following we set p =

T
t=1 pt .

We next give some basic notational definitions used through-
out the paper. All variables are assumed to be defined on a prob-
ability space (Ω,F , P). With yit , xit , zit , µi and uit we denote,
respectively, the dependent variable, the sequentially exogenous
covariates, the strictly exogenous covariates, unit specific un-
observed effects and idiosyncratic disturbances. The particular
meaning of sequential and strict exogeneity will be made explicit
below. Furthermore, it proves helpful to introduce the following
notation: yi = (yi1, . . . , yiT ), xi = (xi1 . . . , xiT ), zi = (zi1, . . . ,
ziT ), ui = (ui1, . . . , uiT ), yoit = (yi1, . . . , yit), xoit = (xi1, . . . , xit),
uo
it = (ui1, . . . , uit), and u−i,t = (u1t , . . . , ui−1,t , ui+1,t , . . . , unt).

Although not explicitly denoted, these random variables as well as
the ψit are allowed to depend on the sample size n, i.e., to form
triangular arrays.

Our setup is aimed at accommodating fairly general forms of
cross-sectional dependence in the data. In particular, analogous to
Andrews (2005), who considers static models, we allow in each
period t for the possibility of regressors and disturbances (and
thus for the dependent variable) to be affected by common shocks
that are captured by a sigma field Ct ⊂ F . A special case arises
when ft denotes a vector of common shocks such that Ct = σ(ft).

3 With stronger assumptions than we impose in this paper it may be possible
to prove a multivariate CLT for ψ(n) based on the martingale structure of ψi only,
i.e. without regard to the time series nature of ψit . An example is the case when
the random vectors ψi are exchangeable. Without such additional assumptions a
detailed treatment of the time series structure of ψit is needed.
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