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a b s t r a c t

We introduce two estimators for estimating theMarginal Data Density (MDD) from the Gibbs output. Our
methods are based on exploiting the analytical tractability condition, which requires that some parameter
blocks can be analytically integrated out from the conditional posterior densities. This condition is
satisfied by several widely used time series models. An empirical application to six-variate VAR models
shows that the bias of a fully computational estimator is sufficiently large to distort the implied model
rankings. One of the estimators is fast enough to make multiple computations of MDDs in densely
parameterized models feasible.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modern macroeconometric methods are based on densely pa-
rameterized models such as vector autoregressive models (VARs)
or dynamic factor models (DFMs). Densely parameterized mod-
els deliver a better in-sample fit. It is well-known, however, that
suchmodels candeliver erratic predictions andpoor out-of-sample
forecasts due to parameter uncertainty. To address this issue, Sims
(1980) suggested to use priors to constrain parameter estimates by
‘‘shrinking’’ them toward a specific point in the parameter space.
Provided that the direction of shrinkage is chosen accurately, it
has been shown that densely parameterizedmodels are extremely
successful in forecasting. This explains the popularity of largely
parameterized models in the literature (Stock and Watson, 2002;
Forni et al., 2003; Koop and Potter, 2004; Korobilis, 2008; Banbura
et al., 2010; Koop, 2011).

The direction of shrinkage is often determined by maximiz-
ing the marginal likelihood of the data (see Carriero et al., 2010;
Giannone et al., 2012), also called marginal data density (MDD).
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The marginal data density is defined as the integral of the like-
lihood function with respect to the prior density of the parame-
ters. In few cases, the MDD has an analytical representation. When
an analytical solution for this density is not available, we need
to rely on computational methods, such as Chib’s method (Chib,
1995), Importance Sampling estimators (Hammersley and Hand-
scomb, 1964; Kloek and van Dijk, 1978; Geweke, 1989), estimators
based on the Reciprocal Importance Sampling principle (Gelfand
and Dey, 1994), importance sampling based on mixture approx-
imations (Frühwirth-Schnatter, 1995), the Bridge Sampling esti-
mator (Meng and Wong, 1996), or the Warp Bridge Sampling
estimator (Meng and Shilling, 2002). Since all these methods rely
on computational methods to integrate the model parameters out
of the posterior density, their accuracy deteriorates as the dimen-
sionality of the parameter space grows large. Hence, there is a ten-
sion between the need for using broadly parameterizedmodels for
forecasting and the accuracy in estimating the MDD which influ-
ences the direction of shrinkage.

This paper aims at mitigating this tension by introducing two
estimators (henceforth, Method 1 and Method 2) that exploit
the information about models’ analytical structure. While Method
1 can be considered as a refinement of the approach proposed
by Chib (1995), Method 2 is based upon the Reciprocal Importance
Sampling principle as in Gelfand and Dey (1994). Conversely to
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fully computational methods, Method 1 and Method 2 rely on the
analytical integration of some parameter blocks.1

The proposed estimators can be applied to econometric mod-
els satisfying two conditions. The first condition (henceforth,
sampling condition) requires that the posterior density can be
block-partitioned so as to be approximated via the Gibbs sampler.
The second condition (henceforth, analytical tractability condition)
states that there exists an integer τ ≥ 2 such that the conditional
posterior p (θ1, . . . , θτ |θτ+1, . . . , θs,D, Y ) can be analytically de-
rived, where Y is the sample data, D is a set of unobservable model
variables, and s is the total number of parameter blocks θi, i ∈

{1, . . . , s}. These two conditions are met by a wide range of mod-
els, such as Vector AutoRegressive Models (VARs), just-identified
Structural VAR models (SVARs), Reduced Rank Regression Mod-
els such as Vector Equilibrium Correction Models (VECMs), un-
restricted Markov-Switching VAR models (MS VARs), Dynamic
Factor Models (DFMs), Factor Augmented VAR models (FAVARs),
and Time-Varying Parameter (TVP) VAR models.

Bymeans of aMonte Carlo experiment, we show that exploiting
the analytical tractability condition leads to sizable gains in
accuracy and computational burden, which quickly grow with the
dimensionality of the parameter space of the model. We consider
VAR(p) models, in the form studied by Villani (2009) and Del
Negro and Schorfheide (2010) (i.e., the so-called mean-adjusted
VAR models), from one up to four lags, p = 1, . . . , 4. We fit these
four VAR models, under a single-unit-root prior (Sims and Zha,
1998), to data sets with increasing number of observable variables.
It is compelling to focus onmean-adjustedVARmodels because the
true conditional predictive density2 can be analytically derived in
closed form. We can compare the performance of our estimators
with their fully computational counterparts; that is to say the
estimator proposed by Chib (1995) and that introduced by Gelfand
and Dey (1994). Method 1 and Chib’s method only differ in the
computation of the conditional predictive density when applied to
mean-adjusted VAR models. While Method 1 evaluates the exact
analytical expression for the conditional predictive density, Chib’s
method approximates this density computationally via Monte
Carlo integration. Therefore, we can quantify the accuracy gains
associated with exploiting the analytical tractability condition by
comparing the conditional predictive density estimated by Chib’s
method with its true value. This assessment would have not been
possible, if we had based our Monte Carlo experiment on models
that require data augmentation to approximate the posterior, such
as DFMs, or on other estimators rather than Chib’s method, such as
the Bridge Sampling estimator.

The main findings of the experiment are: (i) the fully-
computational estimators that neglect the analytical tractability
condition lead to an estimation bias that severely distorts model
rankings; (ii) our twomethods deliver very similar results in terms

1 Fiorentini et al. (2011) use Kalman filtering and Gaussian quadrature to
integrate scale parameters out of the likelihood function for dynamic mixture
models.
2 If one partitions the parameter space Θ into s vector blocks; that is Θ = {θ1,

. . . , θs}, the conditional predictive density p (Y |θτ+1, . . . , θs) is defined as

p (Y |θτ+1, . . . , θs) ≡


p (Y |θ1, . . . , θs) p (θ1, . . . , θτ |θτ+1, . . . , θs) dθ1 . . . dθτ

where p (Y |θ1, . . . , θs) is the likelihood function and p (θ1, . . . , θτ |θτ+1, . . . , θs) is
the prior for the first τ parameter blocks (conditional on the remaining blocks). Note
that the conditional predictive density is a component of the MDD, p(Y ), that can
be expressed as follows:

p(Y ) =


p (Y |θτ+1, . . . , θs) p (θτ+1, . . . , θs) dθτ+1, . . . , dθs

where p (θτ+1, . . . , θs) is the prior for the parameter blocks that cannot be analyt-
ically integrated out.

of posteriormodel rankings, suggesting that their accuracy is of the
same order ofmagnitude in the experiment; (iii) exploiting the an-
alytical tractability condition prevents our estimators from being
affected by the curse of dimensionality. Related to this last finding,
we argue that Method 2 is suitable for performing model selection
and model averaging across a large number of models, as it is the
fastest.

The paper is organized as follows. Section 2 introduces the
conditions that a model has to satisfy in order to apply our two
estimators. In this section, we describe the two methods proposed
in this paper for computing theMDD. Section 3 performs theMonte
Carlo application. Section 4 concludes.

2. Methods for computing the marginal data density

The marginal data density (MDD), also known as the marginal
likelihood of the data, is defined as the integral taken over the
likelihood with respect to the prior distribution of the parameters.
Let Θ be the parameter set of an econometric model and Y be the
sample data. Then, the marginal data density is defined as

p(Y ) =


p(Y |Θ)p(Θ)dΘ (1)

where p(Y |Θ) and p(Θ) denote the likelihood and the prior den-
sity, respectively.

In Section 2.1, we describe the two methods proposed in this
paper in a canonical situation consisting of four vector blocks. In
Section 2.2, we present the two estimators applied to the general
case of s vector blocks. Finally, Section 2.3 deals with the scope of
application of the proposed estimators.

2.1. Four vector blocks

Let us consider a model whose set of parameters and latent
variables is denoted by ΘD

= {D, Θ} where D stands for the
latent variables and Θ for the parameters of the model, where
Θ = {θ1, θ2, θ3}. We denote the prior for model’s parameters as
p (Θ), which is assumed tohave a knownanalytical representation.
Furthermore, the likelihood function, p(Y |Θ), is assumed to be
known in closed form or easy to evaluate. We focus on models
satisfying the following two conditions:

(i) It is possible to draw from the conditional posterior distribu-
tions p (θ1|θ2, θ3,D, Y ), p (θ2|θ1, θ3,D, Y ), p (θ3|θ1, θ2,D, Y ),
and from the posterior predictive density, p (D|θ1, θ2, θ3, Y ).

(ii) The conditional posterior distribution p (θ1, θ2|θ3,D, Y ) is
analytically tractable.

Condition (i) implies that we can approximate the joint poste-
rior p (Θ|Y ) and the predictive density p (D|Y ) through the Gibbs
sampler. We label this condition as the sampling condition. Condi-
tion (ii) is the analytical tractability condition and is most likely to
be satisfied through awise partitioning of the parameter space and
the specification of a conjugate prior.

Method 1 is based on interpreting the MDD as the normalizing
constant of the joint posterior distribution

p(Y ) =
p (Y |Θ) p (Θ)

p (θ1|θ2, θ3, Y ) p (θ2|θ3, Y ) p (θ3|Y )
(2)

where the numerator is the product of the likelihood and the prior,
with all integrating constants included, and the denominator is the
posterior density of Θ . Denote the posterior mode as Θ =

θ1,θ2,θ3. Hereafter, let p(·) denote a density for which an analytical
expression is available andp(·) denote a density that needs to be
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