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a b s t r a c t

In this paper, we propose two parametric alternatives to the standard GJR-GARCHmodel of Glosten et al.
(1993), based on additive and multiplicative decompositions of the variance. They allow the variance of
the model to have a smooth time-varying structure. The suggested parameterizations describe structural
change in the conditional and unconditional variances where the transition between regimes over time
is smooth. The main focus is on the multiplicative decomposition of the variance into an unconditional
and conditional components. Estimation of the multiplicative model is discussed in detail. An empirical
application to daily stock returns illustrates the functioning of the model. The results show that the
‘long memory type behaviour’ of the sample autocorrelation functions of the absolute returns can also
be explained by deterministic changes in the unconditional variance.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modelling time-varying volatility of financial returns has been a
flourishing field of research for a quarter of a century following the
introduction of the Autoregressive Conditional Heteroskedasticity
(ARCH)model by Engle (1982) and the Generalized ARCH (GARCH)
model developed by Bollerslev (1986). These basic models have
since been generalized in many ways; see Teräsvirta (2009) for
a recent survey. The increasing popularity of GARCH models has
been mainly due to their ability to describe the dynamic structure
of volatility clustering of stock return series, specifically over
short periods of time. However, one may expect that economic or
political events or changes in institutions cause the structure of
volatility to change over time. This means that the assumption of
stationarity may be inappropriate under the evidence of structural
changes in financial return series. Mikosch and Stărică (2004)
argued that stylized facts in financial return series such as the long-
range dependence and the ‘integrated GARCH effect’ can be well
explained by unaccounted structural breaks in the unconditional
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variance; see also Lamoureux and Lastrapes (1990). Diebold (1986)
was the first to suggest that occasional level shifts in the intercept
of theGARCHmodel can bias the estimates towards the parameters
of an integrated GARCH model.

Another line of research has focused on explaining nonstation-
ary behaviour of volatility by long-memory models, such as the
Fractionally Integrated GARCH (FIGARCH) model by Baillie et al.
(1996). The FIGARCHmodel is not the only way of handling the ‘in-
tegrated GARCH effect’ in return series. Baillie and Morana (2009)
generalized the FIGARCH model by allowing a deterministically
changing intercept. Hamilton and Susmel (1994) and Cai (1994)
suggested a Markov-switching ARCH model for the purpose, and
their model has later been generalized by others. One may also
assume that the GARCH process contains sudden deterministic
switches and try and detect them; see Berkes et al. (2004)who pro-
posed a method of sequential switch or change-point detection.

Yet another way of dealing with high persistence would be
to explicitly assume that the volatility process is ‘smoothly’
nonstationary and model it accordingly. Dahlhaus and Subba Rao
(2006) introduced a time-varying ARCH process for modelling
nonstationary volatility. Their tvARCH model is asymptotically
locally stationary at every point of observation but it is globally
nonstationary because of time-varying parameters. van Bellegem
and von Sachs (2004) and, later, Engle and Rangel (2008) assumed
that the variance of the process of interest can be decomposed into
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two components, a stationary and a nonstationary one. The former
authors fitted the deterministic component nonparametrically
to the squared observations, whereas the latter described the
nonstationary component by using splines. Both assumed that
the stationary component follows a GARCH process. For a similar
approach using a different version of splines, see Brownlees and
Gallo (2010). Mishra et al. (2010) did not explicitly mention
nonstationarity but used the multiplicative decomposition to
correct the potential misspecification due to a ‘rough’ parametric
GARCH specification by a smooth nonparametric component.
Yet another multiplicative decomposition was introduced in
Osiewalski (2009) and Osiewalski and Pajor (2009). Some of these
developments are described in detail in van Bellegem (2012) and
Teräsvirta (2012).

In this paper, we introduce two nonstationary GARCH models
for situations in which volatility appears to be nonstationary.
First, we propose an additive time-varying parameter model, in
which a directly time-dependent component is added to the GJR-
GARCH specification. In the second alternative, the variance is
multiplicatively decomposed into the stationary andnonstationary
component as in van Bellegem and von Sachs (2004) or Engle
and Rangel (2008). The deterministic component of the variance
is parametric and thus different from previous approaches. We
show that the multiplicative decomposition is a special case of the
general additive decomposition. As we shall see, this component
is very flexible and can describe many types of nonstationary
behaviour. The specification and evaluation issues involved are
discussed separately in Amado and Teräsvirta (2012). In this work
we concentrate on parameter estimation.

The outline of this paper is as follows. In Section 2 we present
the new Time-Varying (TV-) GARCH or GJR-GARCH model and
highlight some of its properties.Maximum likelihood estimation of
themodel is discussed in Section 3. Section 4 contains an empirical
example to a daily stock index return series. Finally, Section 5
contains concluding remarks.

2. The model

Let the model for an asset or index return yt be

yt = µt + εt

where {εt} is an innovation sequence with the conditional mean
E(εt |Ft−1) = 0 and a potentially time-varying conditional vari-
ance E(ε2t |Ft−1) = σ 2

t , and Ft−1 is the σ -field generated by the
available information until t − 1. We assume that E(yt |Ft−1) = 0
and focus solely on σ 2

t . Let

εt = ζtσt (1)

where {ζt} is a sequence of independent random variables with
mean zero and variance one. Furthermore, assume that σ 2

t is a
time-varying representationmeasurable with respect toFt−1 with
either an additive structure

σ 2
t = ht + gt (2)

or a multiplicative one

σ 2
t = htgt . (3)

The function ht is a component describing conditional het-
eroskedasticity in the observed process yt , whereas gt introduces
nonstationarity. Since we are going apply our model to stock re-
turn series, where asymmetry of the response to shocks becomes
an issue,we assume that ht follows the stationaryGJR-GARCH(p, q)
model of Glosten et al. (1993):

ht = α0 +

q
i=1

(αi + λiI(εt−i < 0))ε2t−i +

p
j=1

βjht−j (4)

where I(A) is the indicator variable: I(A) = 1 when A is true, and
zero otherwise. Alternatively,we could use the asymmetric GARCH
model of Engle and Ng (1993) and the quadratic GARCH model by
Sentana (1995). The GJR-GARCH(p, q)model is nested in (2) when
gt ≡ 0 and in (3) when gt ≡ 1. Note that when (3) holds, ε2t−i is
replaced by φ2

t−i = ε2t−i/gt−i, i = 1, . . . , q, in (4). Both (2) and (3)
combinedwith (1) define a time-varying parameter GARCHmodel.

In order to characterize smooth changes in the conditional
variance we assume that the parameters in (4) vary smoothly over
time. This is done for example by defining the function gt in (2) as
follows:

gt =


α∗

0 +

q
i=1

(α∗

i + λ∗

i I(εt−i < 0))ε2t−i +

p
j=1

β∗

j ht−j


×G(t/T ; γ , c), (5)

where G(t/T ; γ , c) is the so-called transition function which is a
continuous and non-negative function bounded between zero and
one. Furthermore, time t/T is the transition variable and is defined
on the interval [0, 1], where T is the number of observations. A
suitable choice for G(t/T ; γ , c) is the general logistic transition
function

G(t/T ; γ , c) =


1 + exp


−γ

K
k=1

(t/T − ck)

−1

,

γ > 0, c1 ≤ · · · ≤ cK . (6)

The idea of applying smooth transition to modelling parameter
change with (6) was considered by Lin and Teräsvirta (1994). This
function is such that the parameters of the GJR-GARCH model
(1)–(2) fluctuate smoothly over time between (αi, λi, βj) and (αi+

α∗

i , λi + λ∗

i , βj + β∗

j ), i = 0, 1, . . . , q, j = 1, . . . , p. The slope
parameter γ controls the degree of smoothness of the transition
function. When γ −→ ∞, the switch from one set of parameters
to another in (2) is abrupt, that is, the process contains structural
breaks at c1, c2, . . . , cK . The order K ∈ Z+ determines the shape of
the transition function. Typical choices for the transition function
in practice are K = 1 and K = 2. These are illustrated in Fig. 1 for
a set of values for γ , c1, and c2. Large values of γ increase the ve-
locity of transition from 0 to 1 as a function of t/T . The TV-GARCH
modelwithK = 1 is suitable for describing returnprocesseswhose
volatility dynamics are different before and after the smooth struc-
tural change. When K = 2, the parameters change but eventually
return towards their original values as a function of time.

More generally, one can define an extended version of the ad-
ditive TV-GJR-GARCHmodel by allowing more than one transition
function in gt . The result becomes

gt =

r
l=1


α0l +

q
i=1

(αil + λilI(εt−i < 0))ε2t−i

+

p
j=1

βjlht−j


Gl(t/T ; γl, cl) (7)

where Gl(t/T ; γl, cl), l = 1, . . . , r , are logistic functions as in
(6) with smoothness parameter γl and a threshold parameter vec-
tor cl. The parameters in (4) and (7) satisfy the restrictions α0 +j

l=1 α0l > 0, αi + λi/2 +
j

l=1(αil + λil/2) > 0, i = 1, . . . , q,
and βi +

j
l=1 βil ≥ 0, i = 1, . . . , p, all for any j ∈ {1, . . . , r}.

These conditions are sufficient for gt > 0 for all t .
The model (1), (2), (4) and (5) or, more generally (7), is

an additive TV-GJR-GARCH model whose intercept, ARCH and
GARCH parameters are all time-varying. This implies that the
model is capable of accommodating systematic changes both in
the ‘baseline volatility’ (or unconditional variance) and in the
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