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a b s t r a c t

This paper considers the instrumental variable regression model when there is uncertainty about
the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of
exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical
problems associated with standard model selection procedures, we develop a reversible jump Markov
chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very
flexible and can be easily adapted to analyze any of the different priors that have been proposed in
the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant
restriction such as exogeneity or over-identification. We illustrate our methods in a returns-to-schooling
application.
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1. Introduction

For the regression model where all potential regressors are
exogenous, a large literature1 has arisen to address the problems
caused by a huge model space. That is, the number of models
under consideration is typically 2K , where K is the number of
potential regressors. With such a huge model space, there are
many problems with conventional model selection procedures
(e.g. sequential hypothesis testing procedures run into pre-test
problems). Bayesian model averaging (BMA) can be used to avoid
some of these problems. However, the size of the model space
means that carrying out BMA by estimating every model is
typically computationally infeasible. Accordingly, an algorithm
which simulates from the model space (e.g. the Markov chain
Monte Carlo model composition algorithm of Madigan and York,
1995) must be used. In the case of the regression model with
exogenous regressors, such methods are well-developed, well-
understood and are increasingly making their way into empirical
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work. However, to our knowledge, there are no comparable papers
for the empirically important casewhere regressors are potentially
endogenous and, thus, instrumental variable (IV) methods are
required.2 The purpose of the present paper is to fill this gap.

Inference about structural parameters in the IV regression
model requires the formulation of assumptions whose validity
is often uncertain. A useful representation of the model is the
incomplete simultaneous equations model (see, for example,
Hausman, 1983). Within this representation, the most crucial
assumptions relate to the set of instruments and the rank
condition for identification (Greene, 2003, p. 392). In addition
to these, one has to decide how many regressors to include,
and which of these are potentially endogenous. This can lead
to a huge model space and, thus, similar issues arise as for
the regression model with exogenous regressors. In practice,
researchers typically try different specifications until a set of
restrictions (i.e. a particular choice of instruments, exogenous and
endogenous regressors) passes a battery of misspecification tests
(e.g. Anderson and Rubin, 1949, 1950; Hausman, 1983; Sargan,
1958). Given the large number of possible models, the repeated
application of diagnostic tests will result in similar distorted size

2 Two related papers are Cohen-Cole et al. (2009) and Lenkoski et al.
(forthcoming) but the model space in these papers is small and, hence, simulation
methods from themodel space are not required. Furthermore, the approach of these
papers (averaging of two-staged least squares estimates using BIC-based weights)
does not have a formal Bayesian justification. Tobias and Li (2004) does BMA in a
returns to schooling example similar to the one we use, but this paper does not
address endogeneity concerns.
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properties as arise in the regression model with exogenous
regressors. Since estimates of structural parameters that rely on
incorrect identification restrictions can result in large biases, the
consequences of these problems can be substantive. BMA can be
used to mitigate such problems. But the size of the model space
often precludes estimation of all models. This leads to a need for
computational methods which simulate from the model space. A
contribution of the present paper is to design a reversible jump
Markov chain Monte Carlo algorithm (RJMCMC, see Green, 1995
or Waagepetersen and Sorensen, 2001) that explores the joint
posterior distribution of parameters andmodels and thus allows us
to do BMA. This allows us to carry out inference on the structural
parameters that, conditional on identification holding, accounts
for model uncertainty. Furthermore, our algorithm allows for
immediate calculation of the posterior probability associated with
any restriction, model or set of models. Thus, we can easily check
the validity of identifying restrictions (or exogeneity restrictions,
etc.) by calculating the posterior probability of these restrictions.

In our applications, we find that standard versions of RJMCMC
algorithms (e.g. adapting the RJMCMC methods for seemingly
related regression, SUR, models developed by Holmes et al., 2002,
to the IV case) can perform poorly, remaining stuck for long
periods in models with low posterior probability. To improve the
performance of our RJMCMC algorithms, we borrow an idea from
the simulated tempering literature and augment our model space
with so-called cold models.3 The cold models are similar to the
models of interest (called hot models) but are simplified in such
a way that the RJMCMC algorithm makes very rapid transitions
between cold models. As suggested by the simulated tempering
literature, we find that this strategy helps the algorithm escape
from local modes in the posterior.

The RJMCMC algorithm we develop is very flexible and can be
easily adapted to handle any of the popular approaches to Bayesian
inference in IV models such as Drèze (1976), Kleibergen and Van
Dijk (1998) and Strachan and Inder (2004). We describe in detail
how the algorithm works in the context of two popular Bayesian
approaches to instrumental variables and reduced rank regression.
These are the classic approach of Drèze (1976) and the modern
approach of Strachan and Inder (2004).4 We also show how, if
desired, the RJMCMC algorithm can be easily coded to produce
results for several different priors by running the algorithm just
once.

Section 2 describes the model space we consider. Section 3
describes the algorithm with complete details being included in a
Technical Appendix. Section 4 applies ourmethods to a returns-to-
schooling example based on Card (1995) and Section 5 concludes.

2. Modelling choices in the incomplete simultaneous equations
model

We will work with the incomplete simultaneous equations
model, which takes the form:

y1i = γ ′y2i + β ′xi + u1i (1)
y2i = Π2xxi + Π2zzi + v2i

3 To avoid confusion, note that some of the related literature uses different
terminology where the space of distributions to be simulated from is augmented
with hot distributions, while the actual target distribution is the distribution with
the lowest temperature. See for example Kou et al. (2006) and Hoogerheide et al.
(2011).
4 We use a proper prior version of the improper prior used by Drèze (1976), as

in the subsequent papers of Drèze and Richard (1983) and Zellner et al. (1988).
With respect to the prior by Strachan and Inder (2004), we will use a parameter-
augmented version of it similar to that used by Koop et al. (2010). The working
paper version of this paper, available on Gary Koop’s website, provides full details
of how Kleibergen and Van Dijk (1998)’s prior can be used with our algorithm.

where y1i : 1×1, y2i : m×1, xi : k1j ×1, zi : k2j ×1, i = 1, . . . ,N .
The errors are normal with zero means and are uncorrelated over
i. We assume
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The reduced form version of this model can be written as:
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Πx : (m + 1) × k1j Πz : (m + 1) × k2j.

The subindex j stands for the jthmodel, and j varies from 1 toNmod,
where Nmod is the total number of models. To avoid notational
clutter, we will not attach j subindices to parameter matrices
although, of course, these will vary over models.

When using this model, there are many sources of uncertainty
over identification that arise. Assuming σ12 ≠ 0, we can solve for
the parameters


β ′, γ ′


from the reduced form matrixΠ = [Πx Πz]

through the relations

π1x − γ ′Π2x = β ′ and (3)

π1z − γ ′Π2z = 0. (4)
If we are able to solve (4) for γ , we can subsequently solve for β
using (3). Solving for γ depends upon the rank of the matrix Πz . If
k2j = m and rank (Πz) = m then there is a unique solution γ ′

=

π1zΠ
−1
2z and the equation is just identified. If k2j > m and rank (Πz)

= m then there aremore equations thanwe need to identify γ and
so the equation is over-identified. If k2j < m so rank (Πz) < m,
there are fewer equations than necessary to identify γ and thus
the equation is under-identified.

Uncertainty over identification can also result from uncertainty
over what variables in y2i are endogenous and what variables in zi
are not valid instruments. If we relax the earlier assumption on σ12
to allow for σ12 = 0, which implies y2i is exogenous, then we have
additional solutions for γ from γ ′

= ω12Σ
−1
22 and the condition

σ12 = 0 needs to be taken into accountwhen determiningwhether
β ′, γ ′


is just or over-identified. A further complication arises if

elements of γ or σ12 are zero, as these restrictions imply elements
of y2i are exogenous. This effectively changes the value of m,
increasing the number of identifying restrictions in (4) and, hence,
the conditions for under, just and over identification. Note also
that, if k2j > m and (k2j − mj) columns of the m × k2j matrix Π2z
are zero, or, if rank (Π2z) = mj < m, then not all elements of zi
may be regarded as valid instruments. In this case, we can then
represent Π2z as the product of two lower dimensional matrices,
Π2z = Π2zϱ, where Π2z ism × mj and ϱ ismj × k2j both full rank.
The valid instruments are then ϱzi.

Furthermore, if elements of β are zero, then this gives us more
equations of the type (4) and fewer equations of the type (3), again
affecting the identification status of


β ′, γ ′


.

In this paper, we consider a model space which includes all
the over-identified and just-identified models (see below for a
discussion of non-identified models). These are the models in
which k2j ≥ m and Π2z has full rank. Models in this category differ
according to the following aspects:
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