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a b s t r a c t

This paper treats estimation in a class of new nonlinear threshold autoregressive models with both a
stationary and a unit root regime. Existing literature on nonstationary threshold models has basically
focused onmodels where the nonstationarity can be removed by differencing and/or where the threshold
variable is stationary. This is not the case for the process we consider, and nonstandard estimation
problems are the result.

This paper proposes a parameter estimation method for such nonlinear threshold autoregressive
models using the theory of null recurrent Markov chains. Under certain assumptions, we show that
the ordinary least squares (OLS) estimators of the parameters involved are asymptotically consistent.
Furthermore, it canbe shown that theOLS estimator of the coefficient parameter involved in the stationary
regime can still be asymptotically normalwhile the OLS estimator of the coefficient parameter involved in
the nonstationary regime has a nonstandard asymptotic distribution. In the limit, the rate of convergence
in the stationary regime is asymptotically proportional to n−

1
4 , whereas it is n−1 in the nonstationary

regime. The proposed theory and estimation method are illustrated by both simulated data and a real
data example.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ordinary unit root models have just one regime, whereas ordi-
nary threshold models have several regimes, but are stationary. In
this paper, we study a threshold model that has unit-root behavior
in one regime and acts as a stationary process in another regime.
More specifically, we consider a parametric threshold autoregres-
sive (TAR) model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Dτ ] + et ,
1 ≤ t ≤ n, (1.1)

where Cτ is a subset of R1
= (−∞, ∞) indexed by τ > 0, Dτ =

C c
τ = R1

− Cτ is the complement of Cτ , τ is essentially assumed
to be known in the asymptotic analysis in this paper, −∞ <
α1, α2 < ∞ are assumed to be unknown parameters, but will
be estimated under the assumption that α2 = 1, the distribution
of {et} is absolutely continuous with respect to Lebesgue measure
with pe(·) being the density function satisfying infx∈C pe(x) > 0 for
all compact sets C , {et} is assumed to be a sequence of independent
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and identically distributed (i.i.d.) random errors with E[e1] = 0,
0 < σ 2

= E[e21] < ∞ and E[e41] < ∞, {et} and {ys} are assumed
to be mutually independent for all s < t , and n is the sample
size of the time series. Let y0 = 0 throughout this paper. Even
though (1.1) is the simplest possible of the type of models we are
discussing, it requires nonstandard techniques using the theory
of null recurrent Markov chains. A few results of this theory are
reviewed in Appendix A.

The vast majority of threshold models used have been station-
ary models, i.e., models for which |α1| < 1 and |α2| < 1 in
the first-order case. Such models were introduced by Tong and
Lim (1980). See also Tong (1983, 1990). Among later contributions,
Chan (1990, 1993) consider both estimation and testing problems
for the case where {yt} of (1.1) is stationary. His work is extended
in Li and Ling (2011). Pham et al. (1991) consider a nonlinear unit-
root problem and establish strong consistency results for the or-
dinary least squares (OLS) estimators of α1 and α2 for the case
where (α1, α2) lie on the boundary, Hansen (1996) rigorously es-
tablishes an asymptotic theory for the likelihood ratio test for a
threshold, Chan and Tsay (1998) discuss a related continuous-time
TAR model, and Hansen (2000) proposes a new approach to es-
timating stationary TAR models. More recently, Liu et al. (2011)
extend the discussion of Pham et al. (1991) by establishing an
asymptotic distribution of the OLS estimator of α2 for the case
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where Cτ = (−∞, τ ] and either α2 = 1 and α1 < 1 or α2 > 1 and
α1 ≤ 1 hold.

There have been other extensions to the nonstationary case,
see in particular Caner and Hansen (2001), thus having a class of
models that allows for both nonlinearity and nonstationarity, and
where these properties can be (Caner andHansen, 2001) separately
tested for. The nonstationarity of these models under the null
hypothesis has been of a rather restricted form, thus typically
regarding both yt−yt−1 and the threshold variable to be stationary.
In the first-order case, this leads to a somewhat degenerate model
that under the null hypothesis has H0 : α1 = α2 = 1 in

yt − yt−1 = (α1 − 1) yt−1I[zt ∈ Cτ ]

+ (α2 − 1) yt−1I[zt ∈ Dτ ] + et , (1.2)

where {zt} is a sequence of stationary threshold variables, Cτ =

(−∞, τ ] and Dτ = (τ , ∞). The parameters α1 and α2 can then be
estimated under H0, which leads to a pure randomwalk model for
(1.2) but more general difference type models for the higher-order
case are treated in Caner andHansen (2001). The authors also point
out that there are several nonstationary alternatives when H0 does
not hold. One of the alternatives to H0 is as follows:

H1 : |α1| ≠ 1 and α2 = 1, (1.3)

which does not imply yt − yt−1 is stationary under H1. For more
references, including econometric interpretations of threshold
effects, we refer to Teräsvirta et al. (2010); see in particular
Sections 3.2.2, 8.2.3, 11.5 and 11.8.

We allow for more general forms of nonstationarity in which
we do not require yt − yt−1 to be stationary, nor do we require the
threshold variable to be stationary. To the best of our knowledge,
estimation in this situation has not been treated before in the
literature. In the present paper, for simplicity, we only treat the
first-order case, but the theory can be extended to higher-order
and vector models, making it possible to introduce threshold co-
integration models in this context. It is also possible to allow
nonlinear behavior in the regime Cτ . This is done by replacing the
linear function α1y by a nonparametric function, also implicitly
including an intercept in the model.

Although our focus in this paper is to estimate α1 and α2
and then study asymptotic properties of the proposed estimates
in Section 2.1 when τ is assumed to be known, we propose an
estimation procedure for the τ parameter in Section 2.2 when τ
is unknown. Since the case of both |α1| < 1 and |α2| < 1 and the
case of α1 = α2 = 1 have already been discussed in the literature
(Chan, 1993; Hansen, 2000), we are interested in proposing an
estimation method to deal with model (1.1) where Cτ is either a
compact subset of R1 or a set of type (−∞, τ ] or [τ , ∞), andwhere
α2 = 1 and α1 may be larger or smaller than one in absolute value.
Model (1.1) may be used to detect and then estimate structural
change from one regime to another. Note that τ can be a vector
of unknown parameters. In the case where Cτ = [τ1, τ2] with
−∞ < τ1 < τ2 < ∞, τ = (τ1, τ2). It is shown in Section 2 that
the OLS estimator of α1 is asymptotically consistent with a rate of
convergence which in the limit is proportional to n−

1
4 where we

can even let |α1| > 1 when Cτ is compact. By contrast, the OLS
estimator of α2 is asymptotically consistent with the super n-rate
of convergence. In a related paper by Liu et al. (2011), the authors
have established similar results forα2, but have not established any
asymptotic theory forα1.

The organization of this paper is as follows. Section 2 establishes
asymptotic distributions of the OLS estimators of α1 and α2 and
contains an estimation procedure for the threshold parameter τ .
Section 3 discusses an extension ofmodel (1.1) to a semiparametric
threshold autoregressive (SEMI-TAR) model. Examples of imple-
mentation are given in Section 4. The paper concludes in Section 5.

We will use the theory of β-null recurrent Markov chains in this
paper and some general results about these processes are given in
Appendix A. Much more details can be found in Karlsen and Tjøs-
theim (2001), hereafter referred to as KT. The theory of the present
paper is different from the theory of KT in several aspects. In con-
trast to KT, we consider a parametric nonstationarymodel. The ab-
sence of a kernel function makes it harder to prove existence of
moments. On the other hand, the autoregressive structure makes
it difficult to apply the local-time regression technique of Park and
Phillips (2001) and Wang and Phillips (2009a,b). The threshold
structure and the splitting into two regimes arewhatmakes it pos-
sible to employ some of the theory of KT in the present situation.
The mathematical proofs of our theory are given in Appendix B.

2. Estimation in parametric threshold autoregressive models

We propose an ordinary least squares (OLS) estimation method
for the unknown parameters α1 and α2 in Section 2.1. Some re-
marks about estimation of the τ parameter are given in Section 2.2.

2.1. OLS estimation method and asymptotic theory

Consider model (1.1). It is obvious that α1 and α2 can be esti-
mated by the ordinary least squares estimators

α1 =α1(τ ) =

n
t=1

yt yt−1I[yt−1 ∈ Cτ ]

n
t=1

y2t−1I[yt−1 ∈ Cτ ]

and (2.1)

α2 =α2(τ ) =

n
t=1

yt yt−1I[yt−1 ∈ Dτ ]

n
t=1

y2t−1I[yt−1 ∈ Dτ ]

. (2.2)

This implies that

α1 − α1 =

n
t=1

et yt−1I[yt−1 ∈ Cτ ]

n
t=1

y2t−1I[yt−1 ∈ Cτ ]

and (2.3)

α2 − 1 =

n
t=1

et yt−1I[yt−1 ∈ Dτ ]

n
t=1

y2t−1I[yt−1 ∈ Dτ ]

. (2.4)

In order to establish an asymptotic distribution for each of the
estimators, we first need to state some auxiliary results. Observe
that model (1.1) can be written as

yt − yt−1 = (α1 − 1)yt−1I[yt−1 ∈ Cτ ] + et ≡ ut + et , (2.5)

where ut = (α1 − 1)yt−1I[yt−1 ∈ Cτ ].
Before further discussion, we need to introduce Lemma 2.1

below. As it is a special case of Lemma 3.1 below, we need only
to prove Lemma 3.1 in Appendix B.

Lemma 2.1. Let {yt} be generated by model (1.1). Then {yt} is a
β-null recurrent Markov chain with β =

1
2 .

A β-null recurrent Markov chain possesses an invariant mea-
sure πs and there is a variable T (n) keeping track of the number
of regenerations at time n. Note that the definitions of πs(·) and
T (n) are given in detail in Appendix A below. In this appendix, we
have given amotivation for null recurrence in an econometric con-
text and a very brief review of some key facts of the theory. If Cτ
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