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a b s t r a c t

This paper analyzes spatial Probit models for cross sectional dependent data in a binary choice context.
Observations are divided by pairwise groups and bivariate normal distributions are specified within each
group. Partial maximum likelihood estimators are introduced and they are shown to be consistent and
asymptotically normal under some regularity conditions. Consistent covariancematrix estimators are also
provided. Estimates of average partial effects can also be obtained once we characterize the conditional
distribution of the latent error. Finally, a simulation study shows the advantages of our new estimation
procedure in this setting. Our proposed partial maximum likelihood estimators are shown to be more
efficient than the generalized method of moments counterparts.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Most econometric techniques using cross-sectional data are
based on the assumption of independence of the observations.
When the data are outcomes measured at different geographical
locations the assumption of independence is tenuous, especially
as economic activities have becomemore andmore correlated over
space with the advent of modern communication and transporta-
tion improvements. Technological advances in the geographic in-
formation system (GIS) make collecting spatial data easier than
ever before. Consequently, the possibility of spatial correlation
among observations has received more and more attention in a
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wide range of fields, including regional, real estate, agricultural, en-
vironmental, and industrial organization economics (Lee, 2004).

Econometricians have begun to pay more attention to spatial
dependence problems in the last two decades, and there have been
important advances both theoretical and empirical.1 The analysis
of spatial data starts with an underlying spatial structure generat-
ing observed spatial correlations (Anselin and Florax, 1995). There
are two popular ways of capturing spatial dependence. The first is
in the domain of geostatistics, where the spatial index is continu-
ous (Conley, 1999). The second is to assume that spatial sites form a
countable lattice (Lee, 2004). Among lattice models, there are also
two types of spatial dependence models that have received the
bulk of the attention: the spatial autoregressive dependent vari-
able model (SAR) and the spatial autoregressive error model (SAE).
Inmost applications of spatial models, the dependent variables are
continuous, work that has been added by important theoretical re-
sults in Conley (1999), Lee (2004), and Kelejian and Prucha (1999,
2001). Nevertheless, there are a handful of applications that ad-
dress spatial dependencewith discrete choice dependent variables

1 Anselin et al. (2004) wrote a comprehensive review about econometrics for
spatial models.
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(Case, 1991;McMillen, 1995; Pinkse and Slade, 1998; Lesage, 2000;
Beron andVijverberg, 2003; Pinkse et al., 2006). The purpose of this
paper is to advance the available estimation methods for spatially
correlated binary outcomes.

While the analysis can be made more general, we focus on
the probit model with spatially correlated data. As is now well
known, if we ignore the spatial correlation and construct a
pseudo-likelihood function as if we had independent draws, the
resulting pooled maximum likelihood estimator (MLE) is, under
fairly general conditions, consistent and asymptotically normal,
provided the marginal model is correctly specified. Poirier and
Ruud (1988) established this result for time series data, and it is
pretty clear that it holds, under certain assumptions that restrict
the amount of dependence for spatial data. The main drawback to
applying the pooled MLE when the observations are dependent is
a loss of efficiency. Some authors, for example Robinson (1982),
explicitly consider joint maximum likelihood estimation of a
nonlinear model with time series data. Unfortunately, in the
context of spatially correlated data obtaining maximum likelihood
estimators that account for the joint dependence in the data is
computationally very demanding.

Rather than taking either extreme — ignoring the dependence
in the data or trying to model full joint dependence — middle-
ground approaches are possible. For example, Poirier and Ruud
(1988) showhow to estimate the probitmodelwith dependence in
time-series data using generalized conditional moment (GCM) es-
timators. These estimators are computationally attractive and rel-
atively more efficient than ignoring serial dependence. Generally,
nonlinear models with a time series dimension can be estimated
by generalized method of moments (GMM). The GMM approach is
(asymptotically)more efficient than just using a pooledMLEproce-
dure. However, because time series dependence is ignored in form-
ing moment conditions, GMM estimators still can be considerably
less efficient than the joint MLE.

Similar considerations hold for spatially correlated data. Meth-
ods that only use information on themarginal distributions — such
as Pinkse and Slade’s (1998) GMM estimator of the SAE probit
model based on the pooled MLE first order conditions — poten-
tially give up much in terms of efficiency compared with a full
MLE approach. The motivation for the current paper is that joint
MLE is often prohibitively difficult while recognizing that methods
based only on marginal distributions will often be too imprecise.
Therefore, we propose a middle ground between a pooled probit
approach and full maximum likelihood. In particular, we choose to
capture spatial dependence by assuming that sites form a count-
able lattice. Then, we divide the lattice into many small groups
(clusters), where the clusters are formed from adjacent observa-
tions. The resulting structure is a large number of small clusters.
If we can obtain the joint density of the responses within cluster,
we can improve upon methods that completely ignore the spatial
dependence while arriving at estimation methods much less com-
putationally demanding than joint MLE. We refer to our proposed
method as ‘‘partial MLE’’ because we are only using partial joint
distributions, not the entire joint distribution.

Because we model spatial correlation only within a cluster,
we still need to account for spatial correlation across clusters.
This feature is what distinguishes the current setting from a
standard panel data setting, where independence across clusters
are assumed. To obtain valid inference,we appeal to Conley (1999),
who extends Newey and West (1987) to allow for data generated
by a countable lattice. Conley (1999) uses metrics of economic
distance to characterize dependence among agents, and shows that
the GMM estimator is consistent and asymptotically normal under
some assumptions similar to time-series data.

The rest of the paper is organized as follows. Section 2 provides
a brief overview of popular spatial models with a binary response.

Section 3 presents the bivariate spatial probit model. In Section 4,
we prove consistency and asymptotic normality of the PML
estimator (PMLE) under regularity assumptions, and discuss how
to get consistent covariance matrix estimators. Section 5 presents
a simulation study showing the advantages of our new estimation
procedure in this setting. Finally, Section 6 concludes. The proofs
are collected in Appendix A, while the results for the simulation
study are provided in Appendix B.

2. Discrete choice models with spatial dependence

It is useful to begin with a brief discussion of general binary
response models with spatial dependence. For a draw i, let Yi be
a binary outcome and Xi a 1 × K vector of covariates. Assume that
Yi is generated as

Yi = 1[Xiβ + εi > 0], (1)

where εi is an unobserved error and β is a K × 1 parameter vector
to be estimated. Regardless of any dependence in the data across i,
if εi is independent of Xi, then the response probability P(Yi = 1|Xi)
can be obtained if the distribution of εi is known. In the case where
εi ∼ Normal(0, 1), it is well known that P(Yi = 1|Xi) = Φ(Xiβ),
where Φ denotes the standard normal cumulative distribution
function (cdf). The ‘‘marginal probability’’ can be used, under
general assumptions, to consistently estimate β using a pooled
MLE procedure — even though the data may not be independent.
This is effectively the insight of the Poirier and Ruud (1988) results
for time series data.

Allowing explicitly for spatial correlation of the kind that is
popular for linear models raises a couple of important issues, as
recognized in Pinkse and Slade (1998). First, the variance of the
error in such models typically depends on the distances among
pairs of observations in the lattice — via the matrix that is used in
a weighted least squares analysis. LetW denote and N × N matrix
of weights that are exogenous in the sense that

εi|X,W ∼ Normal(0, hi(W , λ)), (2)

where (hi(W , λ)) > 0 is a variance function that depends onλ. The
form of hi(·) differs across spatial models and is not yet impor-
tant. The exogeneity assumption is embodied in the requirement
E(εi|X,W ) = 0, which also imposes a strict exogeneity assump-
tion on the covariates X .

If we maintain (2) along with (1) then D(Yi|X,W ) follows a so-
called heteroskedastic probit model with

P(Yi = 1|X,W ) = Φ


Xiβ/


hi(W , λ)


. (3)

Under sufficient regularity conditions — mainly restricting the
amount of spatial dependence — β and λ can be consistently
and

√
n-asymptotically normally estimated by using a pooled

heteroskedastic probit approach. These moment conditions are
used in the Pinkse and Slade (1998) GMM estimator.

Before we proceed further, the presence of W in (3) raises
a question about how we should summarize the partial effects
of the elements of Xi on the response probability. The notion of
the average structural function (ASF), proposed by Blundell and
Powell (2004) in a different context, seems useful. In the present
application, the ASF is defined as

ASF(x) = EW

Φ


xβ/


hi(W , λ)


. (4)

The average partial effects are obtained by taking changes or partial
derivatives of ASF(x). Given consistent estimators β̂ and λ̂, ASF(x)
can be (under regularity conditions) consistently estimated by

n−1
n

i=1

Φ


xβ̂/


hi(W , λ̂)


. (5)
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