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a b s t r a c t

A quasi-maximum likelihood procedure for estimating the parameters of multi-dimensional diffusions
is developed in which the transitional density is a multivariate Gaussian density with first and second
moments approximating the true moments of the unknown density. For affine drift and diffusion
functions, the moments are exactly those of the true transitional density and for nonlinear drift and
diffusion functions the approximation is extremely good and is as effective as alternative methods based
on likelihood approximations. The estimation procedure generalises to models with latent factors. A
conditioning procedure is developed that allows parameter estimation in the absence of proxies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of the parameters of systems of stochastic dif-
ferential equations by maximum likelihood poses a number of
considerable challenges. First and foremost among these is that
the likelihood function is seldom known in closed-form. Maxi-
mum likelihood estimation, particularly in multiple dimensions,
is therefore infeasible for all practical purposes apart from a few
trivial cases. Themost straightforward way to overcome this prob-
lem is to approximate the unknown transitional density function
with the Gaussian density function, which is known to be an ex-
cellent approximation to the true density for intervals of short du-
ration. Consequently, the transitional probability density function
from which the log-likelihood function is constructed is not the
true transitional density function and the maximum likelihood es-
timator based on this misspecified distribution is referred to as the
quasi-maximum likelihood estimator.

Quasi-maximum likelihood estimation of the parameters of
stochastic differential equations based on theGaussian approxima-
tion is not new (Fisher andGilles, 1996; Duffee, 2002). The simplest

∗ Corresponding author. Tel.: +61 7 31385066; fax: +61 7 31381500.
E-mail addresses: s.hurn@qut.edu.au (A.S. Hurn), k.lindsay@qut.edu.au

(K.A. Lindsay), clelland@numerix.com (A.J. McClelland).

implementation, known as discrete maximum likelihood, requires
that the stochastic differential equations be discretised and the dis-
crete drift and diffusion functions so obtained be used to approx-
imate the mean and variance of the true transitional distribution.
As these moments are determined by the initial point of each tran-
sition and do not change as the process evolves, discretemaximum
likelihood is generally not a consistent estimation method. Elerian
(1998), Shoji and Ozaki (1998), Kessler (1997) and Huang (2011)
all develop ways of improving the Gaussian approximation.

In the univariate case, the most refined form of a quasi-
maximum likelihood approach to parameter estimation is the
method of Aït-Sahalia (2002), in which the approximating density
is expanded in terms of a series of orthogonal polynomials in such a
way that the approximating density approaches the true density in
the limit.1 This polynomial expansion approach works particularly
well in the cases in which it has been applied (see Jensen and
Poulsen, 2002, Bakshi et al., 2006 and Hurn et al., 2007 for the
time-homogeneous diffusions and Egorov et al., 2003 for the time-
inhomogeneous diffusions) and is widely regarded as the method

1 If the approximating density is a Gaussian density, then the appropriate
polynomials are Hermite polynomials. Other approximating densities will use their
associated polynomial basis.
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of choice for estimating the parameters of univariate diffusions.
The polynomial expansionmethod translates into themultivariate
sphere provided a distinction is drawn between reducible and
irreducible models. Aït-Sahalia (2008) develops a closed-form
approximation to the multivariate log-likelihood function that
is similar in spirit to the polynomial expansion and Aït-Sahalia
and Kimmel (2007, 2010) apply this likelihood approximation to
stochastic volatility and interest rate models respectively.

Rather than seek yet more complex ways in which to tackle
the issue of parameter estimation for multivariate diffusions,
this paper returns to the most simple implementation of quasi-
maximum likelihood, namely to approximate the unknown
transitional distribution of the process with the multivariate
Gaussian density. The focus is on developing accurate estimates
of the first two moments of the true transitional probability
distribution for use with the Gaussian approximation. In the
process of doing this a number of new results are derived and the
it is shown, both under simulation and in terms of an empirical
application, that in the multivariate sphere the vanilla version of
quasi-maximum likelihood is very effective.

The main contributions made by this paper may be succinctly
summarised as follows. First, for systems of stochastic differential
equations with affine drift and diffusion functions, it is shown
that it is always possible to provide closed-form expressions
for the first and second moments of the true but unknown
transitional probability distribution. Use of these expressions with
the Gaussian approximation will result in consistent parameter
estimates of the model parameters irrespective of the fact that
a misspecified transitional probability distribution has been used
(see, for example Bollerslev and Wooldridge, 1992). Furthermore,
increasing the dimension of the system to be estimated does not
pose any particular difficulties. Second, for non-affine drift and
diffusion functions it remains possible to solve for the first and
second moments of the transitional distribution numerically. The
use of the Gaussian approximating density has the important by-
product of allowing crucial integrals in the expressions for the
moments to be computed to very high accuracy using Gaussian
quadratures. Third, new analysis is presented to demonstrate the
limiting behaviour of the root mean square error in the Gaussian
approximation to the true transitional distribution in multiple
dimensions for intervals of short duration. A general theoretical
result is obtained which is verified analytically and numerically
by means of a novel application of Parseval’s theorem. Fourth, a
new approach to dealing with unobserved state variables within
the quasi-maximum likelihood framework is presented, which is
based on conditioning the multivariate Gaussian density function
on the unobserved states. Unlike the algorithm developed by
Bates (2006), this conditioning approach based on the Gaussian
density is applicable to non-affine stochastic differential equations.
The resultant filtering algorithm is illustrated in the context
of Heston’s stochastic volatility model (Heston, 1993) and a
non-affine extension of this model. Fifth, simulation evidence is
presented to show that in a multivariate setting, the performance
under simulation of the quasi-maximum likelihood based on a
Gaussian approximation is comparable with that of the closed-
form likelihood approximations reported by Aït-Sahalia and
Kimmel (2007).

2. Specification and estimation

Suppose the N-dimensional process X(t) = (X1, . . . , XN) with
sample space S satisfies the stochastic differential equation

dXk = µk(X; θ) dt +

M
j=1

σkj(X; θ) dWj, k = 1, . . . ,N, (1)

where θ is a vector of model parameters, σ(X; θ) is an array of
dimension N × M with M ≤ N , and dWj is the increment in
the j-th component of the M dimensional vector Wiener process
W (t) = (W1, . . . ,WM) with M × M covariance matrix Q = [Qij]

defined by Qij dt = E

dWi dWj


.

Let f0(X, t | X0, θ) denote the true transitional probability
density function of the process X at time t > 0 starting initially
at X0, then the k-th component of the probability flux vector
associated with Eq. (1) is

Jk = µk(X; θ) f0(X, t | X0, θ)

−
1
2

N
j=1

∂

gjk(X; θ) f0(X, t | X0, θ)


∂Xj

, (2)

where G = [gjk(X; θ)] is the N × N diffusion matrix given by
σ Q σ T. Conservation of probability density requires that f0(X, t |

X0, θ) satisfies the Fokker–Planck equation

∂ f0
∂t

+

N
k=1

∂

∂Xk


µk f0 −

1
2

N
j=1

∂

gjkf0


∂Xj


= 0,

(X, t) ∈ S × (0,∞), (3)

with boundary conditions

N
k=1

nk


µkf0 −

1
2

N
j=1

∂

gjkf0


∂Xj


= 0,

(X, t) ∈ ∂S × (0,∞), (4)

wheren is the unit outwardnormal to ∂S.When the stateX0 is fully
observed, the initial density will be a product of delta functions of
the observed state variables, that is,

f0(X, 0 | X0, θ) =

N
k=1

δ(Xk − X0,k), X ∈ S, (5)

but otherwise it will be a product of delta functions of the observed
state variables and the conditional density of the unobserved state
variables.

The parameters of themodel are to be estimated using observed
data consisting of a sequence of observations, X0, . . . , XT , of
the system at discrete times t0, . . . , tT . The maximum-likelihood
estimator of θ , which maximises the conditional log-likelihood
function of the observed sample with respect to the parameters
θ is

θ = argmax
θ

1
T

T
p=1

log f0(Xp,∆p | Xp−1, θ), (6)

where ∆p is the duration of the interval between observations
Xp−1 and Xp. The primary difficulty with this approach, however,
is that the log-likelihood function in Eq. (6) is seldom known in
closed-form, with the vast majority of known cases relating to
univariate models. Consequently maximum-likelihood estimation
is infeasible for most practical applications of interest.

A simple alternative to using the true (but unknown) transi-
tional density function in the construction of the log-likelihood
function is to replace f0(X, t | Xp, θ) in Eq. (6)with themultivariate
Gaussian density

f (X, t | Xp, θ) =
1

(2π)N/2
1

|Σ |1/2

× exp


−

1
2

N
j,k=1

(Xj − mj)Σ
−1
jk (Xk − mk)


, (7)
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