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a b s t r a c t

This paper explores the properties of jackknifemethods of estimation in stationary autoregressivemodels.
Some general results concerning the correct weights for bias reduction under various sampling schemes
are provided and the asymptotic properties of a jackknife estimator based on non-overlapping sub-
samples are derived for the case of a stationary autoregression of order p when the number of sub-
samples is either fixed or increases with the sample size at an appropriate rate. The results of a detailed
investigation into the finite sample properties of various jackknife and alternative estimators are reported
and it is found that the jackknife can deliver substantial reductions in bias in autoregressive models.
This finding is robust to departures from normality, ARCH effects and misspecification. The median-
unbiasedness and mean squared error properties are also investigated and compared with alternative
methods as are the coverage rates of jackknife-based confidence intervals.
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1. Introduction

Jackknife techniques have a long history in statistics. The
jackknife method of bias reduction was originally proposed by
Quenouille (1956) with Tukey (1958) subsequently demonstrating
how the method could also be used to construct a non-parametric
estimator of variance. As a result it is often referred to as
the Quenouille–Tukey jackknife; see, for example, Efron (1982,
p. 1). According to Miller (1964, p. 1594) the procedure was
named the jackknife by Tukey because ‘‘a boy scout’s jackknife
is symbolic of a rough-and-ready instrument capable of being
utilized in all contingencies and emergencies.’’ The applicability
of the jackknife is certainly widespread but it has found
fewer applications in econometrics than rival bootstrap methods.
Indeed, Efron (1979) demonstrated that the jackknife is a linear
approximation method for the bootstrap in the case of estimating
the sampling distribution of a random variable based on a sample
of i.i.d. (independently and identically distributed) data, a result
that has perhaps been interpreted as favouring the bootstrap in a
wider variety of situations than that to which this result relates.
Moreover, as will be shown below, the standard formulation of the
jackknife statistic is applicable only in the case of i.i.d. data, which
may also help to explain its limited application in econometrics.
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Notwithstanding the preceding comments and the proliferation
of bootstrap methods in econometrics, there has recently been a
realisation that jackknife methods can be effective in reducing the
bias of estimators in models of interest in econometrics. In models
with more instruments than endogenous variables Angrist et al.
(1999) proposed the jackknife instrumental variables estimator
and demonstrated its superior finite sample properties compared
to the two-stage least squares estimator and its comparability to
the limited information maximum likelihood estimator, although
the performance of this estimator has subsequently been criticised
by Davidson and MacKinnon (2006). Hahn et al. (2003) considered
both bootstrap and jackknife bias corrections to maximum
likelihood estimators based on an i.i.d. sample while applications
to panel data models (including nonlinear and dynamic models)
have been considered by Hahn and Newey (2004), Hahn andMoon
(2006) and Dhaene et al. (2006). Jackknife methods have also
been applied to maximum likelihood estimators of the parameters
of continuous time models of the short-term interest rate by
Phillips and Yu (2005) who also demonstrate the resulting gains
that can be made by applying such techniques directly to the
implied bond options prices. Based on the encouraging results
obtained in the above situations this paper explores the properties
of jackknife methods of estimation and inference in stationary
autoregressive (AR) models. In the context of stationary time
series Carlstein (1986) proposed an estimator of variance based
on non-overlapping blocks while Künsch (1989) considered both
jackknife and bootstrap methods of estimating standard errors by
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deleting whole blocks of observations. The focus here, however,
is ultimately concerned more with issues of estimation of the
parameters in AR models than it is with variance estimation,
although the latter becomes important when using the jackknife
estimator for inference.

Some general theoretical results on jackknife methods applied
to a statistic of interest (such as an estimator of a parameter or a
test statistic) are given in Section 2. The first result (Theorem 1)
shows how the full-sample and sub-sample statistics should be
combined in order to eliminate the first-order bias in a general
setting before considering specific sampling situations such as
i.i.d. data as well as non-overlapping and moving-block sub-
samples which are of particular relevance in time series settings.
A further refinement (Theorem 2) shows how statistics from
different sub-sampling methods, or from the same sub-sampling
method with different numbers of sub-samples, can be combined
to eliminate both first- and second-order bias from the statistic of
interest. Specific cases of sub-sampling are also considered, and
a further general result (Theorem 3) shows how the jackknife
weights need to be modified in cases where sub-samples of
unequal lengths are encountered, this being potentially important
in empirical applications.

Section 3 explores jackknifemethods of estimation in stationary
autoregressive models, the focus being on the p’th order model
with an intercept. The motivation for employing jackknife
estimators in this context is rooted in analytical work that provides
Nagar-type expansions for the bias of the ordinary least squares
(OLS) estimator of the AR parameter vector. Theorem 4 derives
the limiting distribution of the jackknife estimator based on non-
overlapping sub-samples of the type utilised by Phillips and Yu
(2005) and shows that it has the same form as the OLS estimator
irrespective of whether the number of sub-samples is fixed or
increases with the sample size at an appropriate rate. Hence
the jackknife estimator has the potential to reduce the finite
sample bias without any loss of asymptotic efficiency, although
the effect on the finite sample mean squared error (MSE) is
unknown (but is explored in simulations in Section 5). Shao and Tu
(1995, pp. 66–67) provide examples where the jackknife statistic
can have either a larger or smaller MSE than the underlying
statistic, concluding that, in general, ‘‘the relative performance . . . is
indefinite and depends on the unknown population’’ (p. 67) and,
furthermore, ‘‘we should keep inmind that the jackknife estimator
. . . is designed to eliminate bias and, therefore, can be used when
the bias is an important issue.We need to balance the advantage of
unbiasedness against the drawback of a large mean squared error’’
(pp. 67–68). The limiting distribution in Theorem 4 can be used
as the basis for inference provided an appropriate estimator of the
asymptotic variance matrix can be obtained, and two possibilities
are provided in Theorem 5.

Section 4 reports the results of an extensive simulation exercise
(involving 100,000 replications) using the AR(1) model in an
attempt to obtain evidence on a number of issues, including:
which sub-samplingmethod produces the greatest bias reduction;
the optimal number of sub-samples to employ; how the optimal
number of sub-samples varies with sample size; and the extent
of additional bias reduction that can be achieved by attempting
to eliminate the second-order bias. The results cover a range of
sample sizes and a range of positive values for the AR parameter
that approaches the boundary of the stationarity region, these
being of greatest empirical relevance in economics and finance.
The analysis of bias reduction using the jackknife when a unit
root is present can be found in Chambers and Kyriacou (2012).
Comparisons of the jackknife estimators are also made with
respect to the exact median unbiased (MU) estimator of Andrews
(1993) and a recursive-design wild bootstrap estimator based
on Gonçalves and Kilian (2004). The jackknife estimators are

shown to result in the smallest bias in all cases considered.
Section 4 also examines the robustness of the results to departures
from normality, using the parameters of the Gamma distribution
to control the degree of skewness and kurtosis, as well as
to autoregressive conditional heteroskedasticity (ARCH) and to
higher-order and misspecified autoregressions.

Additional considerations concerning the performance of the
jackknife (and other) techniques are explored in Section 5.
Although designed to reduce bias other distributional aspects
are important to the usefulness of an estimator, and so the
median-unbiasedness and mean squared error are examined first.
Simulations reveal that it is possible to obtain an MSE less than
the full-sample OLS estimator by using jackknife (and other)
estimators, a feature of the jackknife estimators being that a larger
number of sub-samples is required to minimise root MSE (RMSE)
than to minimise bias. It is also shown that the distributions of the
jackknife estimators are much closer to being median-unbiased
than those of the OLS estimator, the latter being significantly
negatively biasedparticularly for larger values of theARparameter.
Section 5 also looks at the coverage rates of jackknife confidence
intervals based on the asymptotic distribution in Theorem 4 and
compares them to those of OLS, MU and bootstrapmethods. Proofs
of all Theorems are contained in Appendix A, while Appendix B
contains supplementary results that are used in the proofs and
elsewhere. Section 6 concludes.

The following notation will be used throughout the paper.
The symbol

p
−→ denotes convergence in probability;

d
−→ denotes

convergence in distribution; and, for a k × 1vector x, ∥x∥ =k
i=1 x

2
i

1/2
denotes the Euclidean norm.

2. Jackknife methods: some general results

The idea behind the jackknife method of bias reduction is to
combine a statistic based on a full sample of data with a set
of statistics based on sub-samples in a way that eliminates the
first-order bias. The statistic of interest, β̂n, is often an estimator
of a parameter or parameter vector although functions of model
parameters and test statistics, for example, can also be considered
provided they satisfy (or are assumed to satisfy) certain properties.
The following general result for the jackknife statistic will be used
to deal with specific cases of interest.

Theorem 1. Let y = (y1, . . . , yn)′ be a sample of n observations on
a random variable and let β̂n = β(y) denote the statistic of interest
satisfying

E(β̂n) = β +
a1
n

+
a2
n2

+ O

n−3 , (1)

where a1 and a2 are constants. Let Yi(i = 1, . . . ,m) denote a set
of sub-samples of y, each of which has equal length ℓ = O(n), and
let β̂i = β(Yi) (i = 1, . . . ,m) denote the corresponding sub-sample
statistics. Then the jackknife statistic

β̂J =


n

n − ℓ


β̂n −


ℓ

n − ℓ


1
m

m
i=1

β̂i (2)

satisfies E(β̂J) = β + O(n−2).

Theorem 1 is a general result that holds for both i.i.d. samples
as well as dependent samples of the type arising in time series. The
expression for bias in (1) can usually be justified by a Nagar-type
expansion; see, for example, Bao and Ullah (2007) for some results
in the general time series setting and Bao (2007) for the AR(1)
model under general error distributions. Some specific cases will
now be considered and Theorem 1 will be employed to determine
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