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a b s t r a c t

This paper links the boundary element method (BEM) and the thin-layer method (TLM) in the context of
structures that are invariant in one direction and for which the equations of motion can be formulated in
the wavenumber–frequency domain (2.5D domain). The proposed combination differs from previous
formulations in that one of the inverse Fourier transforms and the Green’s functions (GF) integrals are
obtained in closed form. This strategy is not only supremely efficient, but also avoids singularities when
the collocation point belongs to the integrating boundary element, and provides accurate evaluations of
the coefficients of the boundary element matrices.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is often the case that a domain can be idealized as a longitu-
dinally invariant medium, i.e., a structure whose cross section
remains constant along a given direction, say in direction y. For
instance, in the case of vibrations induced by moving vehicles, it
is often convenient to idealize the road, track or tunnel as a struc-
ture whose geometry is invariant in the longitudinal direction [1].
In that case, after carrying out a Fourier transform from the
Cartesian spatial coordinate y to the horizontal wavenumber ky,
the analysis of the three dimensional structure can be reduced to
a series of 2D problems. This type of analysis is referred to as a
two-and-a-half dimensional (2.5D) problem and is normally cast
in the wavenumber–frequency domain (ky;x).

Furthermore, whenever the domain under consideration is
unbounded (e.g., soil-structure interaction problems), the radiation
of waves at infinity must be accounted for. The boundary element
method (BEM) intrinsically accounts for the radiation condition
and therefore is one of the tools most commonly used in these sit-
uations. The BEM requires the availability of the so called funda-
mental solution (or Green’s functions – GF), which in the vast
majority of cases are those for a homogeneous, complete space
(i.e. the Stokes–Kelvin problem), and rarely those of layered spaces.
The reason for this is that in the 2.5D domain, the GF for homoge-
neous whole-spaces are known in analytical form [2], while the GF

for layered spaces can only be obtained via numerical methods
such as transfer matrices [3,4], stiffness matrices [5], or the thin-
layer method (TLM) [6].

Formulations for the 2.5D BEM were previously given in
Refs. [7,8] using the whole-space GF and in Ref. [9] using the GF
for layered spaces obtained via the stiffness matrix method. In this
work, we present a very efficient alternative formulation based on
the Green’s functions obtained with the TLM (2.5D BEM + TLM).
When compared with the formulations in [7,8], the proposed pro-
cedure has the enormous advantage of avoiding the discretization
of the free-surface of a half-space and of the interfaces between
material layers, because layering is considered automatically in
the definition of the GF. It accomplishes this at the expense of more
elaborate computations to obtain the GF. When compared with the
work presented in [9], the 2.5D BEM + TLM approach described
herein replaces the discrete numerical Fourier inversion in ky by
exact modal summations, which requires solving a narrowly-
banded quadratic eigenvalue problem. This circumvents the need
for an appropriate wavenumber step for kx and thus avoids the
problems of spatial periodicity, wrap-around and aliasing. Another
advantage of the 2.5D BEM + TLM is the avoidance of the numerical
integration of the Green’s functions over the boundary elements,
which is replaced by modal summations, a feature that circum-
vents the complication entailed by the singularities contained in
the GF.

This article is organized as follows: in Section 2 the TLM is
reviewed and the expressions for the calculation of the 2.5D
displacements and stresses are obtained; in Section 3 the direct
calculation of the coefficients of the boundary element matrices
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is addressed; finally, in Section 4 the proposed procedure is
validated by means of some examples.

2. TLM in the 2.5D domain – Green’s functions

The TLM is an efficient semi-analytical method for the calcula-
tion of the fundamental solutions (i.e., GF) of layered media. It
consists in expressing the displacement field in terms of a finite
element expansion in the direction of layering together with ana-
lytical descriptions for the remaining directions. Though initially
it was limited to domains of finite depth, paraxial boundaries were
developed and coupled to the TLM in order to circumvent this
limitation [10]. More recently, perfectly matched layers (PML) have
been proposed and shown to be more accurate than paraxial
boundaries for the simulation of unbounded domains [11].

The TLM has been formulated in the space-frequency domain
(2D, 3D) [12] and in the wavenumber-time domain [13]. It has also
been formulated in the 2.5D domain (x; ky;x) [14], but solely in
terms of displacements elicited by applied forces, and has been
coupled to the BEM in the context of 3D axisymmetric structures
[15]. This section presents the derivation of the expressions for
the displacements, their spatial derivatives and the stresses
anywhere, both in the wavenumber domain (kx; ky;x) and in the
2.5D domain (x; ky;x). Variables with an over-bar or tilde repre-
sent field quantities in the (kx; ky;x) domain, while variables
denoted without diacritical marks represent fields in the mixed
(x; ky;x) domain.

2.1. Displacements in the wavenumber domain (kx,ky,x)

In [14], a TLM formulation is presented in which the displace-
ments elicited by various kinds of loads acting within layered
media are obtained in the (kx; ky;x) and (x; ky;x) domains. Follow-
ing that work, after discretizing a layered domain into thin-layers
and applying the principle of weighted residuals, we obtain a
matrix equation for each thin-layer of the form

P ¼ k2xAxx þ kxkyAxy þ k2yAyy þ i kxBx þ kyBy
� �þ G�x2M

� �h i
U ð1Þ

where the vectors P and U contain, respectively, the external trac-
tions pa kx; ky;x

� �
and displacements ua kx; ky;x

� �
at the nodal inter-

faces, and where the remaining boldface variables are matrices that
depend solely on the material properties of the thin-layers. These
matrices are listed in Appendix A for the case of cross-anisotropic
materials. The variables kx and ky represent the horizontal
wavenumbers in the transverse and longitudinal directions, respec-
tively, x represents the angular frequency, the index að¼ x; y; zÞ
represents the direction of the nodal displacement and/or traction,
and i ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

By means of a similarity transformation, Eq. (1) can be changed
into

~p ¼ k2xAxx þ kxkyAxy þ k2yAyy þ kx~Bx þ ky~By þ G�x2M
� �h i

~u ð2Þ

where ~p and ~u are obtained from P and U by multiplying every third
row by �i and where ~Bx and ~By are obtained from Bx and By by sim-
ply reversing the sign of every third column. Eq. (2) is advantageous
over Eq. (1) because the matrices therein are symmetric while in Eq.
(1) they are not.

After assembling the thin-layer matrices for all the thin-layers,
we obtain the global system of equations with the same configura-
tion as Eq. (2), and although it can easily be solved for ~u, we choose
to follow an alternative and more convenient approach. In fact,
the direct numerical solution of Eq. (2) for ~u (or ~p) precludes the
analytical evaluation of the inverse Fourier transforms from the

(kx; ky;x) domain to the (x; ky;x) domain, and consequently
renders the TLM an inefficient method when compared with the
stiffness matrix approach. For this reason, an alternative approach
is followed wherein we find a modal basis with which we can
calculate ~u and/or ~p through modal superposition. This procedure
enables the analytical transformation of ~u and ~p to the desired
2.5D domain, which constitutes an enormous advantage.

Without entering into lengthy details, the modal basis is found
by solving a quadratic eigenvalue problem in k of the form [14]

k2Axx þ k~Bx þ G�x2M
� �h i

/ ¼ 0 ð3Þ

Rearranging the matrices in this eigenvalue problem by degrees of
freedom (first x, then y and finally z), we observe that these matrices
attain the following structures

Axx ¼
Ax O O
O Ay O
O O Az

2
64

3
75 ~Bx ¼

O O Bxz

O O O
BT
xz O O

2
64

3
75

G ¼
Gx O O
O Gy O
O O Gz

2
64

3
75 M ¼

Mx O O
O My O
O O Mz

2
64

3
75

ð4Þ

Because of the special structure of these matrices, the eigenvalue
problem in Eq. (3) can be decoupled into the following two
eigenvalue problems

k2
Ax O
O Az

� �
þ k

O Bxz

BT
xz O

� �
þ Cx O

O Cz

� �� �
/x

/z

� �
¼ 0

0

� �

k2Ay þ Cy

	 

/y ¼ 0

ð5Þ

which correspond to the generalized Rayleigh and generalized Love
eigenvalue problems. The first eigenvalue problem has 2NR solu-
tions while the second has 2NL solutions, with NR and NL being
the dimension of the corresponding matrices. For the calculation
of the responses, only the solutions that correspond to eigenvalues
with negative imaginary components are considered, because only
these entail waves that carry energy away from the source. Hence
only NR solutions of the Rayleigh problem and only NL solutions
of the Love problem are considered. Based on the eigensolutions,

the displacements uðmnÞ
ab at the mth nodal interface in direction a

due to a unit load applied at the nth nodal interface in direction b
are calculated by modal superposition as listed in Table 1, with
the coefficients Kij given in Table 2.

The displacements at an interior horizontal plane of the ith
thin-layer are obtained by vertical interpolation of the nodal
values, i.e.,

uab zð Þ ¼
Xnn
j¼1

Nj zð ÞuðiÞ
abðjÞ ð6Þ

with nn being the number of nodal interfaces within each thin-layer
(nn ¼ 2 for linear expansion, nn ¼ 3 for quadratic expansion, etc.),

uðiÞ
abðjÞ the nodal displacement of the jth nodal interface of the consid-

ered thin-layer, and Nj zð Þ the corresponding shape function.

Table 1
Nodal displacements in frequency–wavenumber domain.

uðmnÞ
xx ¼PNR

j K3j/
ðmÞ
xj /ðnÞ

xj þPNL
j K4j/

ðmÞ
yj /ðnÞ

yj

uðmnÞ
yy ¼PNR

j K4j/
ðmÞ
xj /ðnÞ

xj þPNL
j K3j/

ðmÞ
yj /ðnÞ

yj

uðmnÞ
xy ¼PNR

j K2j/
ðmÞ
xj /ðnÞ

xj �PNL
j K2j/

ðmÞ
yj /ðnÞ

yj ¼ uðmnÞ
yx

uðmnÞ
xz ¼ �i

PNR
j K5j/

ðmÞ
xj /ðnÞ

zj uðmnÞ
zx ¼ i

PNR
j K5j /

ðmÞ
zj /ðnÞ

xj ¼ �uðnmÞ
xz

uðmnÞ
yz ¼ �i

PNR
j K6j/

ðmÞ
xj /ðnÞ

zj uðmnÞ
zy ¼ i

PNR
j¼1K6j/

ðmÞ
zj /ðnÞ

xj ¼ �uðnmÞ
yz

uðmnÞ
zz ¼PNR

j K1j/
ðmÞ
zj /ðnÞ

zj
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