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a b s t r a c t

Weexamine thehigher order properties of thewild bootstrap (Wu, 1986) in a linear regressionmodelwith
stochastic regressors. We find that the ability of the wild bootstrap to provide a higher order refinement
is contingent upon whether the errors are mean independent of the regressors or merely uncorrelated
with them. In the latter case, the wild bootstrap may fail to match some of the terms in an Edgeworth
expansion of the full sample test statistic. Nonetheless, we show that the wild bootstrap still has a
lower maximal asymptotic risk as an estimator of the true distribution than a normal approximation,
in shrinking neighborhoods of properly specified models. To assess the practical implications of this
result we conduct a Monte Carlo study contrasting the performance of the wild bootstrap with a normal
approximation and the traditional nonparametric bootstrap.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The wild bootstrap of Wu (1986) and Liu (1988) provides a
procedure for conducting inference in the model:

Y = X ′β0 + ϵ, (1)

where Y ∈ R, X ∈ Rdx and ϵ may have a heteroscedas-
tic structure of unknown form. This robustness to arbitrary
heteroscedasticity provides the wild bootstrap with a distinct ad-
vantage over the residual bootstrap of Freedman (1981) which re-
quires homoscedastic errors. Moreover, theoretical results from
Mammen (1993) indicate that the wild bootstrap outperforms
the nonparametric bootstrap when a large number of regressors
are present and the errors obey the mean independence restric-
tion E[ϵ|X] = 0. These properties have led to increasing atten-
tion among economists concerned with heteroscedasticity robust
inference in small sample environments (Horowitz, 1997, 2001;
Cameron et al., 2008; Davidson and Flachaire, 2008), and to a vari-
ety of recent extensions beyond the basic linear regression model
(Cavaliere and Taylor, 2008; Gonçalves andMeddahi, 2009; David-
son and MacKinnon, 2010; Kline and Santos, in press). To date,
however, the higher order properties of the wild bootstrap have
only been studied under the assumption of proper model specifi-
cation, where the errors are mean independent of the regressors.
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Liu (1988) first established that when this condition holds the wild
bootstrap provides a refinement over a normal approximation.

Since the seminal work of White (1980a,b, 1982), economists
have sought inference procedures robust to the possibilities of both
unmodeled heteroscedasticity and misspecification (see Stock,
2010 for a recent retrospective). In an important contribution,
Mammen (1993) established that the wild bootstrap exhibits a
form of robustness, showing that it remains consistent in the ab-
sence of propermodel specification. In this paper, we contribute to
the literature by examiningwhether, in addition to remaining con-
sistent, the wild bootstrap continues to provide a refinement over
the normal approximation under misspecification. Concretely, we
study the higher order properties of the wild bootstrap when ϵ is
uncorrelated with X but not necessarily mean independent of it—
a setting commonly encountered in economics where parametric
modeling is pervasive. It is precisely in such misspecified environ-
ments that heteroscedasticity is likely to arise making the higher
order properties of thewild bootstrap of particular interest (White,
1982).

We conduct our analysis in two steps. First, we compute
the approximate cumulants (Bhattacharya and Ghosh, 1978) of
t-statistics under both the full sample and bootstrap distributions
with general assumptions on thewild bootstrapweights.We show
that both the first and third approximate cumulants may disagree
up to order Op(n−

1
2 ) if higher powers of X are correlated with

ϵ—a situation that is ruled out under proper specification. This
higher order discordance between the approximate cumulants
under the full sample and the bootstrap distribution implies that
if valid Edgeworth expansions exist they would only be equivalent
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up to order Op(n−
1
2 ) (Hall, 1992). As a result, despite remaining

consistent under misspecification, the wild bootstrap may fail to
provide a higher order refinement over a normal approximation.

We complement this result by formally establishing the exis-
tence of valid one term Edgeworth expansions when the distribu-
tion of the wild bootstrap weights is additionally assumed to be
strongly nonlattice (Bhattacharya and Rao, 1976). In accord with
Liu (1988) we note that one-sided wild bootstrap tests obtain a
refinement to order Op(n−1) under proper specification. However,
this result is undermined by certain forms of misspecification un-
der which only some, but not all, of the second order terms in the
full sample Edgeworth expansion are matched by their bootstrap
counterparts. Despite this discordance, we establish that the wild
bootstrap still possesses a lower asymptotic risk as an estimator of
the true distribution of studentized test statistics than a normal
approximation in shrinking neighborhoods of properly specified
models. Heuristically, these results suggest that the wild bootstrap
should outperform a normal approximation provided misspecifi-
cation is not ‘‘too severe’’. To assess the practical implications of
this result, we conclude by conducting a Monte Carlo study con-
trasting the performance of the wild bootstrap with that of a nor-
mal approximation and the traditional nonparametric bootstrap in
the presence of misspecification.

The rest of the paper is organized as follows. Section 2 contains
our theoretical resultswhile Section 3 examines the implications of
our analysis in a simulation study.We briefly conclude in Section 4
and relegate the main proofs to the Appendix. Some auxiliary
results are collected in a supplementary Appendix available in our
respective websites.

2. Theoretical results

While numerous variants of the wild bootstrap exist, we study
the original version proposed by Wu (1986) and Liu (1988).
Succinctly, given a sample {Yi, Xi}

n
i=1 and β̂ the OLS estimator

from such sample, the wild bootstrap generates new errors and
dependent variables:

Y ∗

i ≡ X ′

i β̂ + ϵ∗

i ϵ∗

i ≡ (Yi − X ′

i β̂)Wi, (2)

where {Wi}
n
i=1 is an i.i.d. sample independent of the original

data {Yi, Xi}
n
i=1. A bootstrap estimator β̂∗ can then be computed

from the sample {Y ∗

i , Xi}
n
i=1 and the distribution of

√
n(β̂∗

− β̂)
conditional on {Yi, Xi}

n
i=1 (but not {Wi}

n
i=1) is used to approximate

that of
√
n(β̂ − β0). While it may not be possible to compute

the bootstrap distribution analytically, it is straightforward to
simulate it.

We focus our analysis on inference on linear contrasts of β0,
which includes both individual coefficients and predicted values
as special cases. In particular, for an arbitrary c ∈ Rdx we examine:

Tn ≡

√
n
σ̂

c ′(β̂ − β0) σ̂ 2
≡ c ′H−1

n Σn(β̂)H−1
n c, (3)

where the dx × dx matrices Hn andΣn(β) are defined by

Hn ≡
1
n

n
i=1

XiX ′

i Σn(β) ≡
1
n

n
i=1

XiX ′

i (Yi − X ′

iβ)
2. (4)

The bootstrap statistic T ∗
n is then the analogue to Tn but computed

on {Y ∗

i , Xi}
n
i=1 instead. Namely,

T ∗

n ≡

√
n

σ̂ ∗
c ′(β̂∗

− β̂) (σ̂ ∗)2 ≡ c ′H−1
n Σ∗

n (β̂
∗)H−1

n c, (5)

where Hn is as in (4), andΣ∗
n (β) ≡

1
n


i XiX ′

i (Y
∗

i − X ′

iβ)
2.

As argued in Mammen (1993), under mild assumptions on the
wild bootstrap weights {Wi}

n
i=1, the distribution of T ∗

n conditional

on {Yi, Xi}
n
i=1, (but not {Wi}

n
i=1) provides a consistent estimator for

the distribution of Tn. Consequently, tests based upon a comparison
of the statistic Tn to the quantiles of thewild bootstrap distribution
of T ∗

n can provide size control asymptotically. In what follows, we
explore whether such a procedure is additionally able to provide a
refinement over the standard normal approximation.

2.1. Assumptions

In model (1), the regression can be made to include a constant
by setting one of the components of the vector X to equal one
almost surely. Because such a setting will require special care in
our notation, we let X = (1, X̃ ′)′ if X contains a constant and
set X̃ = X otherwise. Throughout, for a matrix A, we also let
∥ · ∥F denote the Frobenius norm ∥A∥

2
F ≡ trace {A′A}. Given

this notation, we introduce the following assumptions on the data
generating process.

Assumption 2.1. (i) {Yi, Xi}
n
i=1 is i.i.d., satisfying (1) with E[Xϵ] =

0; (ii) E[∥XX ′
∥
ν
F ] < ∞ and E[∥XX ′ϵ2∥νF ] < ∞ for some ν ≥ 9;

(iii) H0 ≡ E[XX ′
] and Σ0 ≡ E[XX ′ϵ2] are full rank; (iv) for

Z ≡ (X̃ ′, X ′ϵ, vech (X̃ X̃ ′)′, vech (XX ′ϵ2)′)′, ξZ its characteristic
function, lim sup∥t∥→∞ |ξZ (t)| < 1.1

Assumption 2.2. (i) {Wi}
n
i=1 is i.i.d., independent of {Yi, Xi}

n
i=1 with

E[W ] = 0, E[W 2
] = 1 and E[|W |

ω
] < ∞, ω ≥ 9; (ii) for U ≡

(W ,W 2)′, ξU its characteristic function, lim sup∥t∥→∞ |ξU(t)| < 1.

Assumption 2.1(i) allows for misspecification of the conditional
mean function by requiring E[Xϵ] = 0 rather than E[ϵ|X] =

0. In Assumption 2.1(ii), we demand the existence of certain
higher ordermoments of (Y , X) so that the approximate cumulants
of Tn are finite. The requirements on the weights {Wi}

n
i=1 in

Assumption 2.2(i) are standard in thewild bootstrap literature and
satisfied by all commonly used choices of wild bootstrap weights.

Assumptions 2.1(i)–(iii) and 2.2(i) suffice for showing that the
approximate cumulants of Tn and of T ∗

n under the bootstrap distri-
bution may disagree up to order Op(n−

1
2 ) under misspecification.

In order to additionally establish the existence of Edgeworth ex-
pansions, however, we also impose Assumptions 2.1(iv) and 2.2(ii).
These requirements, also known as Cramer’s condition, are stan-
dard in the Edgeworth expansion literature (Bhattacharya and Rao,
1976). Unfortunately, this requirement rules out two frequently
used wild bootstrap weights: Rademacher random variables and
a weighting scheme originally proposed in Mammen (1993). Thus,
while our results on approximate cumulants are applicable to these
choices of weights, our results on Edgeworth expansions are not.

2.2. Approximate cumulants

In what follows, for notational simplicity, we denote expecta-
tions, probability and law statements conditional on {Yi, Xi}

n
i=1 (but

not {Wi}
n
i=1) by E∗, P∗ and L∗ respectively. Additionally, we define

the following parameters which play a fundamental role in our
higher order analysis:

σ 2
≡ c ′H−1

0 Σ0H−1
0 c κ ≡ E[(c ′H−1

0 X)3ϵ3]

γ0 ≡ E[(c ′H−1
0 X)2Xϵ] γ1 ≡ E[(c ′H−1

0 X)(X ′H−1
0 X)ϵ]. (6)

Finally, we let Φ denote the distribution of a standard normal
random variable and φ its density.

We begin our analysis by obtaining an asymptotic expansion for
Tn and T ∗

n .

1 For a symmetric matrix A, vech (A) denotes a column vector composed of its
unique elements.
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