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a b s t r a c t

We consider the problem of estimating a varying coefficient regression model when regressors include
a time trend. We show that the commonly used local constant kernel estimation method leads to an
inconsistent estimation result, while a local polynomial estimator yields a consistent estimation result.
We establish the asymptotic normality result for the proposed estimator. We also provide asymptotic
analysis of the data-driven (least squares cross validation)method of selecting the smoothing parameters.
In addition, we consider a partially linear time trend model and establish the asymptotic distribution of
our proposed estimator. Two test statistics are proposed to test the null hypotheses of a linear and of a
partially linear time trend models. Simulations are reported to examine the finite sample performances
of the proposed estimators and the test statistics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Trending is an important topic in economics such as trends in
productivity growth and economic growth. As Krugman (1995)
commented: ‘‘Productivity growth is the single most important
factor affecting our economic well being. . . ’’, and as noted
in Andrews and McDermott (1995), ‘‘it is clear that most
macroeconomic variables and many financial variables exhibit
trends’’. Most of the existing researches adoptmodels with a linear
trend or a stochastic trend with a constant drift. When a constant
drift is included in a stochastic trend model, this results in a model
with the time trend variable having a constant coefficient while
the disturbance has a variance that grows over time. In this paper
we take an alternative approach to model the trend behavior. In
our model, time trend has a stochastic coefficient while we also
consider a partially linear specificationwhere the coefficient of the
time trend variable is a constant, the coefficients of other variables
varywith a stationary covariate. Specifically, we consider a varying
coefficientmodel of the form: Yt = X⊤

1tβ1(Zt)+tβ2(Zt)+ut , where
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βj(z), j = 1, 2, is a smooth function of z. A functional coefficient
time trend model provides much flexibility and may help to
identify the sources of changes. There is a literature that views the
trend as deterministic trendswith (multiple) breaks, e.g. see Perron
(1989) and Zivot andAndrews (1992). The deterministic trendwith
multiple break points are closely related to ourmodel. Ourmodel is
also related to a regime switching model with time trend and with
an observable state variable Zt such that Yt = X⊤

1tβ1 + tβ2 + ut if
Zt < c , and Yt = X⊤

1tα1+tα2+ut if Zt ≥ c , where c is a constant and
the state variable Zt determines the regimes. A regime switching
model allows for discrete jump for the β coefficient, but within
each regime the coefficient stays constant. In our framework the
coefficient β(·) is allowed to vary smoothly with respect to a
relevant stationary covariate. In addition, our model contains the
traditional linear time trend model, or a more general partially
linear time trend model, as special cases.

There are other related works on nonlinear time trend
models. Andrews and McDermott (1995) studied the nonlinear
parametric econometric models with deterministically trending
variables. Robinson (1989) was the first to study a nonparametric
time-varying coefficient model in which he modeled regression
coefficients as an unspecified smooth function of time. Cai (2007)
extended Robinson’s model to the case with serially correlated
disturbance terms and applied the method to US stock market
data to estimate a varying coefficient CAPM, and found the
β-coefficient was indeed time varying and exhibited interesting
patterns. In this paper we follow a more traditional approach
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by introducing the time trend as a regressor but its coefficient
can change smoothly over some relevant stationary covariate.
We find that the asymptotic results are somewhat different from
conventional nonparametric regression models with stationary
(I(0)) or unit-root non-stationary (I(1)) regressors. For example,
we show that surprisingly, the popularly used local constant kernel
estimation method leads to an inconsistent estimation result,
while a local polynomial method can be used to consistently
estimate the model.

Our approach extends the existing functional coefficient
regression model literature a step further to include a time trend
as a regressor. Recently, the varying coefficient models have
attractedmuch attention among econometricians and statisticians.
One attractive feature of this model is its ability to capture the
nonlinearity of the data and its capacity to ameliorate the so-called
‘‘curse of dimensionality’’. Another advantage is its interpretability.
It provides simple low dimension curves (often univariate curves)
which describe themarginal effects of explanatory variables on the
dependent variable. Cai et al. (2000), Fan and Zhang (2000), Zhang
et al. (2002), Cai (2007), Cai et al. (2009) and Xiao (2009) are among
the recent works using this model to deal with stationary and non-
stationary time series data.1

The paper is organized as follows. In Section 2, we consider a
varying coefficient model with a time trend and some stationary
regressors. Asymptotic theory of a local polynomial estimator is
derived. We also provide asymptotic analysis of the least squares
cross validation selected smoothing parameter, and study a
partially linear varying coefficient model. In Section 3, we propose
two test statistics for testing a linear and a partially linear varying
coefficient models. We report simulation results in Section 4
to examine the finite sample performances of our proposed
estimators and the test statistics. The proofs are relegated into
three appendices with the supplementary Appendix C available
upon request.

2. A time trend varying coefficient model

2.1. Local polynomial estimation method and asymptotic results

Weconsider the following time trend varying coefficientmodel.

Yt = X⊤

t β(Zt) + ut = X⊤

1tβ1(Zt) + t β2(Zt) + ut , (2.1)

where Zt is a scalar,X1t is a (d−1)×1 vector of stationary regressors
(d ≥ 2), β1(·) is a (d − 1) × 1 vector-valued smooth coefficient
function associated with X1t .

We will use a qth-order (q ≥ 1) local polynomial method to
estimate model (2.1). Let B(z) = (β1(z)⊤, β2(z), β

(1)
2 (z), . . . ,

β
(q)
2 (z))⊤ with β

( j)
2 (z) =

djβ2(z)
dzj

, j = 1, . . . , q, and define X̃⊤
t =

(X⊤

1t , t, t(Zt − z), 1
2! t(Zt − z)2, . . . , 1

q! t(Zt − z)q). Then the qth

order local polynomial estimator B(z) = (β̂1(z)⊤, β̂2(z), β̂
(1)
2 (z),

. . . , β̂
(q)
2 (z))⊤ is given by

B(z) = argmin
B

n
t=1

[Yt − X̃⊤

t B]
2Kh,zt z,

where Kh,zt z = h−1K((Zt − z)/h). K(·) is the kernel function and h
is the smoothing parameter.

Note that we use local constant approximation for β1(·) and
local polynomial approximation for β2(·). Of course we could
also use local polynomial approximation for β1(·). However, this

1 For a variety of economic applications of varying coefficient models, see
Mamuneas et al. (2006), Stengos and Zacharias (2006), among others.

will introduce (d − 1)q extra parameters to be estimated (the
derivatives of the (d − 1) × 1 vector-valued function β1(·)). Since
the nonparametric kernel method only uses local data (data close
to z) when estimating β(z), an estimation method with too many
parametersmay severely limit the usefulness of the nonparametric
estimation method in practice.

It is easy to show that B̂(z) has the following close form
expression:

B̂(z) =


n

t=1

X̃t X̃⊤

t Kh,zt z

−1 n
t=1

X̃t(X⊤

1tβ1(Zt)

+ tβ2(Zt) + ut)Kh,zt z

= B(z) +


n

t=1

X̃t X̃⊤

t Kh,zt z

−1 n
t=1

X̃t


X⊤

1t (β1(Zt)

− β1(z)) + t


β2(Zt) −

q
i=0

1
i!
β

(i)
2 (z) (Zt − z)i



× Kh,zt z +


n

t=1

X̃t X̃⊤

t Kh,zt z

−1 n
t=1

X̃tutKh,zt z . (2.2)

The first (d − 1) elements of B̂(z) estimate β1(z), and the
remaining (q + 1) elements estimate β2(z) and its derivatives
up to the order q. Let Dn be a (d + q) × (d + q) diagonal
matrix defined by Dn = Diag(1, . . . , 1, n, nh, . . . , nhq), Sn(z) =

D−1
n [

1
n

n
t=1 X̃t X̃⊤

t Kh,zt z]D
−1
n , L2n(z) =

1
n

n
t=1 D

−1
n X̃tutKh,zt z and

L1n(z) =
1
n

n
t=1 D

−1
n X̃t [X⊤

1t (β1(Zt) − β1(z)) + t(β2(Zt) −
q

i=0
1
i!β

(i)
2 (z) (Zt − z)i)]Kh,zt z . Then it is easy to show that

Dn[B̂(z) − B(z)] = Sn(z)−1(L1n(z) + L2n(z)).

Below we list some regularity conditions. We assume that
{(X⊤

1t , Zt , ut)}
+∞

t=−∞ is a strictly stationary process. We use C l
=

C l(D) to denote the space of functions that has a continuous lth
derivative function on D , where D is the support of Zt .

Assumption 2.1. The coefficient function β1(·) ∈ C3, β2(·) ∈

Cq+3, where q ≥ 1 is a positive integer, f (·) ∈ C2 andσ 2(x1, ·) ∈ C2

for all x1 in the support of X1t , where f (·) is the density function of
Zt and σ 2(x1, z) = E(u2

t |X1t = x1, Zt = z).

Assumption 2.2. a. The kernel function K(·) is a bounded and
symmetric density function with a compact support SK . Also,
K(·) satisfies the Lipschitz condition, that is, |K(u) − K(v)| ≤

C |u − v| for all u, v ∈ SK , where C is a positive constant.
b. |g(u, v|x0, x1; l)| ≤ M1 < ∞, for all l ≥ 1, where g(u, v|

x0, x1; l) is the conditional density function of (Z0, Zl) given
(X10, X1l), and f (u|x) ≤ M2 < ∞, where f (u|x) is the condi-
tional density function of Zt given X1t = x.

c. The process {(X⊤

1t , Zt , ut)} is α-mixing with


∞

j=1 j
γ
[α( j)]1−2/δ

< ∞ for some δ > 2 and γ > 1 − 2/δ. Also, E∥X1t∥
2δ < ∞.

d. E[u2
0 + u2

l |Z0 = z, X10 = x0; Zl = z ′, X1l = x1] ≤ M3 < ∞, for
all l ≥ 1, x0, x1 ∈ Rd−1, z and z ′ in a neighborhood of z0.

e. There exists δ∗ > δ, where δ is given in condition 2.2c, such
that E[|u|δ

∗

|Zt = z, X1t = x] ≤ M4 < ∞, for all x ∈ Rd−1

and z in a neighborhood of z0, and α(n) = O(n−θ∗

), where
θ∗

≥ δδ∗/{2(δ∗
− δ)}. Also, E∥X1t∥

2δ∗

< ∞, and n−(δ/4−1/2)

h−(δ/4+1/2−δ/δ∗)
= O(1).

f. As n → ∞, h → 0 and nh → ∞. Further, there exists
a sequence of positive integers sn such that sn → ∞, sn =

o((nh)1/2) and (n/h)1/2α(sn) → 0, as n → ∞.
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