
Journal of Econometrics 170 (2012) 68–75

Contents lists available at SciVerse ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Distribution-free tests of stochastic monotonicity✩

Miguel A. Delgado a,∗, Juan Carlos Escanciano b

a Departamento de Economía, Universidad Carlos III de Madrid, 28903 Getafe (Madrid), Spain
b Economics Department, Indiana University, Bloomington, IN, USA

a r t i c l e i n f o

Article history:
Received 9 September 2010
Received in revised form
27 July 2011
Accepted 13 February 2012
Available online 17 March 2012

JEL classification:
C14
C15

Keywords:
Stochastic monotonicity
Conditional moments
Least concave majorant
Copula process
Distribution-free in finite samples
Tests invariant to monotone transforms

a b s t r a c t

This article proposes a nonparametric test of monotonicity for conditional distributions and its moments.
Unlike previous proposals, our method does not require smooth estimation of the derivatives of
nonparametric curves. Distinguishing features of our approach are that critical values are pivotal under
the null in finite samples and that the test is invariant to any monotonic continuous transformation of
the explanatory variable. The test statistic is the sup-norm of the difference between the empirical copula
function and its least concavemajorant with respect to the explanatory variable coordinate. The resulting
test is able to detect local alternatives converging to thenull at the parametric raten−1/2, withn the sample
size. The finite sample performance of the test is examined bymeans of a Monte Carlo experiment and an
application to testing intergenerational income mobility.
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1. Introduction

Let (Y , X)be a bivariate randomvector taking values inY×X ⊆

R2 and with induced joint distribution

F (y, x) =

 x

−∞

F Y |X (y| x̄) FX (dx̄) , (y, x) ∈ Y × X, (1)

where F Y |X is the conditional distribution function of Y given X
and, henceforth, Fξ denotes the marginal cumulative distribution
function (cdf) of the generic random variable (r.v.) ξ . This article
proposes a nonparametric test for the monotonicity of F Y |X with
respect to the covariate X . That is, the null hypothesis is

H0 : F Y |X (y| ·) ∈ M for each y ∈ Y, (2)

whereM is the set ofmonotonically non-increasing functionswith
support X, i.e.,

M =

m : X ⊆ R → R s.t.m


x′


≥ m


x′′


for x′

≤ x′′

.
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We consider omnibus tests where the alternative hypothesis,
H1, is the negation of H0. The discussion and results below
obviously apply to the monotonically non-decreasing casemutatis
mutandis. This testing problem has been recently addressed by
Lee et al. (2009), LLW henceforth, which generalizes the test of
monotonicity for regression functions proposed by Ghosal et al.
(2000), GSV henceforth.

Testing monotonicity is interesting, first of all, because estima-
tors of nonparametric monotonic curves can be obtained without
imposing smoothness restrictions. See e.g. Brunk (1958) and the
monograph by Barlow et al. (1972). The efficiency of these isotonic
estimators can be improvedwhen it is additionally known that the
nonparametric curve is smooth. See e.g.Mammen (1991) andMuk-
erjee (1988).

The null hypothesis H0 states a stochastic dominance assump-
tion on subpopulations defined by means of the values taken by
the covariate X . For instance, when Y = Y (t + 1) and X =

Y (t), for a Markov process {Y (t)}t∈Z, this generalizes the usual
stochastic dominance concept for the transition probabilities of
Markov chains to a continuous state space, see e.g. Kadi et al. (2009)
for a discussion. Stochastic monotonicity plays a crucial role in
stochastic dynamic programming in order to ensure the unique-
ness of the equilibrium solution. See Chapters 9 and 12 of Lucas
and Stokey (1989). This property is often assumed when modeling
industrial economics dynamics. See e.g. Ericson and Pakes (1995),
Pakes (1986) or Olley and Pakes (1996). Monotonicity is also an
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important identification assumption in many nonparametric and
semiparametric settings, see Matzkin (1994) for a survey and
Aguirregabiria (2010), Banerjee et al. (2009), Lewbel and Linton
(2007), and Tanaka (2008) for some recent applications. Themono-
tonicity of the intergenerational transition function is also worth
testing in the analysis of intergenerational mobility; i.e. having a
parent from a high social-economic status is neverworse than hav-
ing one with a lower status. This testing problem has been con-
sidered by LLW and Dardanoni et al. (2012) using different data
sets. Many theories in finance also imply monotonic patterns in
expected returns and other financial variables, see e.g. Boudoukh
et al. (1999) and Richardson et al. (1992). Recently, Patton and Tim-
mermann (2009) have proposed tests of monotonicity and have
applied them to test whether expected returns are monotonically
decreasing ormonotonically increasing in securities’ risk or liquid-
ity characteristics. The tests presented in this article can be used to
extend their results to a continuous covariate.

The null hypothesis H0 implies that for any non-increasing
function in the second argument γ : Y × X → [0, ∞),

Hγ

0 : E (γ (Y , X)| X = ·) =


Y

γ (y, ·) F Y |X (dy| ·) ∈ M. (3)

The function γ could be non-parametric. In fact, Hγ

0 with
nonparametric γ is crucial in modeling under asymmetric
information. For instance, in signaling models, the analysis is
conducted by amonotonicity property; e.g. more talentedworkers
buy higher education (Spence, 1973) or work faster (Akerlof, 1976)
than their less talented competitors. Monotonicity also plays a
crucial role in adverse selection; e.g. Akerlof (1970) ‘‘lemons’’
model, where higher prices in the used car market results in a
higher average quality of the cars available. Additional examples of
the role of monotonicity can be found in the literature on search,
advertising and bidding. See Milgrom (1981) for discussion.

TestingHγ

0 withγ knownor parametric is interesting on its own
in many circumstances. Testing the monotonicity of regression
curves is a natural hypothesis to test. In fact, the monotonicity of
reduced form mean responses forms a basis for the identification
of non-parametric structural relations. See Manski and Pepper
(2000). Monotonicity of a regression function is also essential for
the root-n consistent estimation of convolution density estimators
in Escanciano and Jacho-Chávez (2012) and references therein.
The test for Hγ

0 with γ known of GSV, extended to testing H0
by LLW, as well as the vast majority of existing monotonicity
tests, rely on the assumption that the nonparametric curve is
smooth enough, and the tests are based on some kind of smooth
nonparametric estimator of the first derivatives. See also previous
proposals by Bowman et al. (1998), Schlee (1982), or Hall and
Heckman (2000). The performance of these tests depends on
the satisfaction of several assumptions on the nonparametric
curve whose monotonicity is tested, as well as other underlying
nonparametric curves, despite the nuisance of suitably choosing
some smoothing parameter.

In this article, rather than looking at the first derivative of the
curve, we pay attention to its integral. To that end, we introduce
the copula function

C (u, v) := F

F−1
Y (u) , F−1

X (v)

, (u, v) ∈ [0, 1]2 ,

where F−1
ξ denotes the quantile function, i.e. the generalized

inverse F−1
ξ (u) := inf{t ∈ R : Fξ (t) ≥ u}, u ∈ [0, 1], associated to

the cdf Fξ . We shall assume that FX and FY are continuous. Hence,
from (1) we can write

C (u, v) =

 v

0
F Y |X


F−1
Y (u)

 F−1
X (v̄)


dv̄, (u, v) ∈ [0, 1]2 .

Let C be the set of concave functions on [0, 1]. The condition
C (u, ·) ∈ C for each u ∈ [0, 1] (4)
is necessary and sufficient forH0. Sufficiency is guaranteed because
a concave function has non-increasing derivatives, and necessity is
proved, for instance, in Apostol (1967, Theorem 2.9).

Therefore, the null hypothesis can be alternatively character-
ized using the least concave majorant (l.c.m) operator, T say, ap-
plied to the explanatory variable coordinate. That is, the l.c.m of
C (u, ·) for each u ∈ [0, 1] fixed, T C (u, ·), is the function satisfy-
ing the following two properties: (i) T C (u, ·) ∈ C and (ii) if there
exists h ∈ C with h ≥ C (u, ·), then h ≥ T C (u, ·). Henceforth,
T C denotes the function obtained by applying the operator T to
the function C (u, ·) for each u ∈ [0, 1]. Thus, we can alternatively
write H0 as
H0 : T C = C . (5)
Obviously, the greatest convex minorant must be used for
characterizing H0 in the monotonically non-decreasing case. The
copula function C, and therefore T C , can be estimated by its
sample analog. Notice that the slope of T C with respect to the
second coordinate is a restricted version of F Y |X , i.e. concave with
respect to X . Our approach is then related to the classical literature
on inference under shape restrictions. Grenander (1956) first found
that the slope of the l.c.m of the empirical distribution is the
maximum likelihood estimator of a monotonic non-increasing
probability density. Chernoff (1964) applied Grenander’s ideas to
the estimation of a mode and Prakasa Rao (1969) to the estimation
of an unimodal probability density. Brunk (1958) extended this
idea to estimating a monotonic (isotonic) regression function, see
Barlow et al. (1972) for a monograph on isotonic regression. These
ideas are behind the classical DIP test of unimodality proposed
by Hartigan and Hartigan (1985). More recently, Durot (2003) has
used the difference between the empirical integrated regression
function and its l.c.m. for testing monotonicity of a regression
curve in a fixed regressor setting with independent and identically
distributed (iid) errors. The fixed regressor assumption is rather
restrictive and rules outmost applications of interest in economics.
Moreover, a näive extension of Durot’s (2003)method to stochastic
regressors is not valid because the integrated regression function
is not necessarily concave or convex when the regression function
is monotone.

Estimates of the l.c.m. of the copula process are used in
this article for testing monotonicity of the conditional cdf, only
assuming continuity of the marginal distributions. Distinguishing
features of our approach are that test’s critical values are pivotal
under the null and that the test is invariant to any monotonic
continuous transformation of the explanatory variable in finite
samples. The former feature is inherited from the use of the
copula process, the latter should be aminimal requirement for any
test of monotonicity. Our proposal permits us to relax different
smoothness assumptions on the underlying nonparametric curves
imposed by LLW and related tests. In particular, with our
approach there is no need to estimate derivatives of nonparametric
conditional curves, which requires a bandwidth choice.

The rest of the article is organized as follows. The test is
discussed in Section 2. Section 3 presents an asymptotic test for
Hγ

0 with γ known. The results of a Monte Carlo study are reported
in Section 4, together with an application of the new test to
studying intergenerational income mobility. Mathematical proofs
are gathered in a technical mathematical Appendix at the end of
the article.

2. Testing stochastic monotonicity

Given independent copies Zn := {(Yi, Xi)}
n
i=1 of (Y , X), the

natural estimator of C (u, v) is the empirical copula process

Cn (u, v) :=
1
n

n
i=1

1{FYn(Yi)≤u}1{FXn(Xi)≤v}, (u, v) ∈ [0, 1]2 , (6)
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