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a b s t r a c t

This paper develops methods of Bayesian inference in a sample selection model. The main feature of
this model is that the outcome variable is only partially observed. We first present a Gibbs sampling
algorithm for a model in which the selection and outcome errors are normally distributed. The algorithm
is then extended to analyzemodels that are characterized by nonnormality. Specifically, we use aDirichlet
process prior and model the distribution of the unobservables as a mixture of normal distributions with
a random number of components. The posterior distribution in this model can simultaneously detect
the presence of selection effects and departures from normality. Our methods are illustrated using some
simulated data and an abstract from the RAND health insurance experiment.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we develop methods of Bayesian inference in a
sample selection model. In general sample selection occurs when
the data at hand is not a random sample from the population
of interest. Instead, members of the population may have been
selected into (or out of) the sample, based on a combination of
observable characteristics and unobserved heterogeneity. In this
case inference based on the selected sample alonemay suffer from
selection bias.

A selection model typically consists of two components. The
first is an equation that determines the level of the outcome
variable of interest. The second is an equation describing the
selection mechanism: it determines whether we observe the
outcome or not. The latter can sometimes be given a structural
interpretation, in which the dependent variable in the selection
equation represents an agent’s latent utility. If this utility crosses a
certain threshold level, the agent acts in such a way that his or her
outcome is observed. If the threshold is not crossed, the agent acts
differently and the outcome remains unobserved. Thus, a selection
model can be viewed as a model for potential outcomes that are
only partially realized and observed. This interpretation applies
most directly to the context of modeling a wage offer distribution.
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Here the wage offer is a potential outcome that is realized only
when an individual actually participates in the labor force.

The importance of selection issues in the analysis of labor
markets was recognized early on by, among others, Gronau (1974)
and Heckman (1974). In his seminal contribution Heckman (1979)
treats sample selection as a potential specification error and
proposes a two-step estimator that corrects for omitted variable
bias. Both Heckman’s two-step procedure and full-information
maximum likelihood have since been widely used in applied
work, and are readily available routines in many statistical
software packages. An obvious problem, however, is that these
estimation methods rely on strong parametric assumptions about
the distribution of unobservables. When these assumptions are
violated the estimators may become inconsistent. To overcome
this problem a number of semiparametric methods have been
proposed. Examples include Cosslett (1991), Ichimura and Lee
(1991), Ahn and Powell (1993) and Lee (1994). An excellent survey
of this literature is Vella (1998).

Despite the numerous contributions in classical econometrics,
the Bayesian literature on selectionmodels has remained relatively
sparse. Bayarri and DeGroot (1987); Bayarri and Berger (1998) and
Lee and Berger (2001) consider inference based on a univariate
selected sample. More recently, Chib et al. (2009) develop a
Bayesianmethod of inference in regressionmodels that are subject
to sample selection and endogeneity of some of the covariates.
They consider models that are potentially nonlinear, but have
normally distributed structural errors.
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Our paper adds to this literature by developing a Bayesian
approach to inference in a type 2 Tobit model (e.g., Amemiya,
1985, Ch. 10). In this model the selection rule is binary: we
only observe whether the latent selection variable crosses a
threshold or not.1 Although we do not explicitly treat alternative
selection mechanisms, it is relatively easy to modify the methods
presented here to cover such cases. We provide Gibbs sampling
algorithms that produce an approximate sample from the posterior
distribution of the model parameters. Our paper differs from Chib
et al. (2009) in that we also consider a model with a flexible
distribution for the unobserved heterogeneity (i.e. the residuals
or ‘errors’ in the two model equations). The starting point for
our analysis is a bivariate normal distribution. Gibbs sampling
in this case is fairly straightforward. The basic model may, of
course, be misspecified. We therefore extend the analysis to a
semiparametric model, based on the Dirichlet process prior of
Ferguson (1973, 1974). This prior implies that the unobserved
heterogeneity follows a mixture distribution with a random
number of components. It has become increasingly popular in
Bayesian semiparametric analyses, and our contribution is to
incorporate it into a sample selection framework.2

A Bayesian approach to inference has two attractive features.
First, the output of the sampling algorithm not only provides the
Bayesian analogue of confidence intervals for the model param-
eters, it also gives an immediate indication of the presence (or
absence) of a selection effect and departures from normality. Sec-
ond, if the econometrician has prior information, e.g. restrictions
on the parameters, then this information can be easily incorpo-
rated through the prior distribution.

The remainder of this paper is organized as follows. Section 2
presents the selection model with bivariate normal errors and
a Gibbs sampling algorithm. In Section 3 we develop the
extension to amixture model. We discuss identification issues, the
Dirichlet process prior and present the corresponding algorithm
to approximate the posterior. The use of the Dirichlet mixture
model is illustrated in Section 4with some simulated data,whereas
Section 5 contains an application to estimating a model for health
care expenditures, using an abstract of the RAND health insurance
experiment. Section 6 concludes and details regarding the various
Gibbs samplers are collected in Appendix. With regard to notation,
Nk(µ, Σ) denotes a k-dimensional normal distribution withmean
µ and variance Σ . Unless there is ambiguity about the dimension,
we will usually omit the subscript k. We use T N (a,b)(µ, Σ) to
denote a N (µ, Σ) distribution, truncated to the interval (a, b).
The standard normal density and distribution functions are φ(·)
and Φ(·), respectively. Finally, G(c0, d0) denotes the gamma
distribution with parameters (c0, d0) and expected value c0/d0.

2. A sample selection model

2.1. Likelihood and prior

Weuse the following selectionmodel for an individualmember
i of the population:
s∗i = x′

i1β1 + ui1,

si = I{s∗i > 0}, (1)

yi =


x′

i2β2 + ui2 if si = 1
missing if si = 0,

where I{·} denotes the indicator function. The row vectors x′

i1 and
x′

i2 contain k1 and k2 variables, respectively. If xi denotes the vector

1 In some cases the selection process contains more information. Lee (1994) uses
a Tobit model for the selection equation. The outcome of interest is then observed
based on a selection variable which itself is partially observed.
2 A recent example is Conley et al. (2008) who use the Dirichlet process prior in

an instrumental variable model.

of distinct covariates in (x′

i1, x
′

i2), the econometrician observes an
i.i.d. sample {xi, yi, si}ni=1 of sizen from the populationmodel.3 Note
that the outcome yi is observed if and only if si = 1. We define
N1 = {i : si = 1} and N0 = {i : si = 0} as the index sets of the
observed and missing outcomes, respectively.

Letting ui = (ui1, ui2)
′ be the vector of errors, a simple para-

metric model is obtained when we assume that ui|xi ∼ N (0, Σ).
This rules out the case where some of the covariates in xi are
endogenous. Provided valid instrumental variables are available,
the selection model can be expanded with a set of reduced-form
equations that relate instruments to endogenous variables. A para-
metric model then specifies a joint distribution (e.g. multivariate
normal) for ui and the reduced-form errors. This approach to mod-
eling endogeneity is taken by Chib et al. (2009), and can be adapted
for themodels we discuss in this paper. To save space and keep the
notation relatively simple, we do not present such an extension
here.

Similar to Koop and Poirier (1997), we parameterize the
covariance matrix of ui as

Σ =

[
1 σ12

σ12 ξ 2
+ σ 2

12

]
, (2)

where σ12 is the covariance and ξ 2 the conditional variance of
ui2, given ui1. When the covariance is zero, ui1 is independent
of y∗

i and we can conduct inference about β2 based on the
subsample indexed by N1. This strategy would lead to selection
bias when σ12 ≠ 0. Setting the variance of ui1 equal to one is the
typical identification constraint for a binary choice model. It
should be noted that in a Bayesian treatment of this model it
is not necessary to impose this constraint. We could proceed
with an unrestricted covariance matrix and conduct inference
in a way similar to McCulloch and Rossi (1994). The main
difficulty, however, lies with selecting a prior for the unidentified
parameters. This prior will induce a prior for the identified
parameters, and needs to be carefully checked to ensure that it
appropriately reflects a researcher’s beliefs. The advantage of the
current model formulation is that a prior is placed directly on the
identified parameters; see Li (1998) and McCulloch et al. (2000),
who proposed this strategy before.

In what follows let θ ′
= (β ′

1, β
′

2, σ12, ξ
2) be the vector of model

parameters. For the observed outcomes we know that yi|θ ∼

N (x′

i2β2, ξ
2

+ σ 2
12).

4 It follows from the bivariate normality
assumption that

Pr{si = 1|yi, θ} = Φ

x′

i1β1


1 + σ 2

12/ξ
2 +

σ12(yi − x′

i2β2)

ξ


ξ 2 + σ 2

12

 .

On the other hand, when the outcome is missing it does not
contribute to the likelihood, and the probability that this occurs is
Pr{si = 0|θ} = 1 − Φ(x′

i1β1).

If y and s are the n-dimensional sample vectors of (yi, si) values,
the likelihood is given by

f (y, s|θ) =

∏
i∈N0

[1 − Φ(x′

i1β1)]

×

∏
i∈N1

(ξ 2
+ σ 2

12)
−1/2φ

 yi − x′

i2β2
ξ 2 + σ 2

12


× Φ

x′

i1β1


1 + σ 2

12/ξ
2 +

σ12(yi − x′

i2β2)

ξ


ξ 2 + σ 2

12

 . (3)

3 We allow for xi2 to be unobserved as well when si = 0. However, xi1 is observed
for all sampling units.
4 Throughout this paper wewill omit conditioning on xi for notational simplicity.
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