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a b s t r a c t

This paper studies likelihood-based estimation and inference in parametric discontinuous threshold
regressionmodels with i.i.d. data. The setup allows heteroskedasticity and threshold effects in bothmean
and variance. By interpreting the threshold point as a ‘‘middle’’ boundary of the threshold variable, we
find that the Bayes estimator is asymptotically efficient among all estimators in the locally asymptotically
minimax sense. In particular, the Bayes estimator of the threshold point is asymptotically strictly more
efficient than the left-endpoint maximum likelihood estimator and the newly proposed middle-point
maximum likelihood estimator. Algorithms are developed to calculate asymptotic distributions and risk
for the estimators of the threshold point. The posterior interval is proved to be an asymptotically valid
confidence interval and is attractive in both length and coverage in finite samples.
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1. Introduction

Since its invention by Tong Howell in the 1970s, the threshold
regression model is popular in both statistics and econometrics.1
Particularly, it has many applications in economics, e.g., Potter
(1995), Durlauf and Johnson (1995), Savvides and Stengos (2000),
Huang and Yang (2006) and Boetel et al. (2007) among others; see
also Lee and Seo (2008) for other examples. The typical setup of
threshold regression models is

y =


x′β1 + σ1e, q ≤ γ ;

x′β2 + σ2e, q > γ ;
(1)

E [e|x, q] = 0,

where q is the threshold variable used to split the sample, γ is the
threshold point, x ∈ Rk, β ≡ (β ′

1, β
′

2)
′
∈ R2k and σ ≡ (σ1, σ2)

′

are threshold parameters on the mean and variance in the two
regimes. We set E[e2] = 1 as a normalization of the error variance

E-mail addresses: p.yu@auckland.ac.nz, whistle.yu@gmail.com.
1 See Howell (2007) for the birth of the threshold time series model.

and allow for conditional heteroskedasticity. All the other variables
have the same definitions as in the linear regression framework.

There are two asymptotic frameworks for statistical inference
on γ . The first is introduced by Chan (1993) in a nonlinear time
series context, where


β ′

1, σ1
′

−

β ′

2, σ2
′ is a fixed constant. The

second is introduced by Hansen (2000), where no threshold effect
on variance exists and the threshold effect in mean diminishes
asymptotically. This paper uses the discontinuous framework of
Chan (1993) with i.i.d. data. The results developed in this paper
can serve as a benchmark for more complicated data generating
processes in time series and panel data.

Both Chan (1993) and Hansen (2000) use least squares criteria
to estimate γ , and derive the asymptotic distributions of the
corresponding least squares estimators (LSEs), but the efficiency
theory has never been studied. As Andrews (1993) concludes in
the related structural change context, ‘‘no optimality properties
are known for the ML estimator of π ’’, where π is the structural
change point and plays a similar role as γ in threshold regression.
This paper intends to fill this gap in a parametric setting. In this
environment, the density of e conditional on (x, q) is assumed to
be fe|x,q (e|x, q;α), where α ∈ Rdα is some nuisance parameter
affecting the shape of the error distribution. The joint distribution
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of (x, q) is fx,q (x, q), the marginal distribution of q is fq(q), and the
unknown parameter is θ =


β ′

1, β
′

2, σ1, σ2, α
′, γ

′
≡

θ ′, γ

′.
In regularmodels, it is well known that the Bayes estimator (BE)

and the maximum likelihood estimator (MLE) are asymptotically
equivalent; see, e.g., Theorem 10.8 of Van der Vaart (1998).
In nonregular models, however, Hirano and Porter (2003) and
Chernozhukov and Hong (2004) show that the BE can be more
efficient than the MLE in boundary estimation. By interpreting
γ as a ‘‘middle’’ boundary of q, this paper finds a similar result
about the estimation of γ . It is worth pointing out that the
threshold regression model is more general than the models in
the above-mentioned boundary literature. As illustrated in the
following Section 2, the conventional boundary problems are
special cases of (1) in an extremely simplified setup. Like the usual
boundary literature, the results of this paper are developed using
the framework in the seminal book by Ibragimov and Has’minskii
(1981). Their Chapter 5 also discusses the statistical inference
when densities have jumps, but their arguments seem more
relevant to Hirano and Porter (2003) and Chernozhukov and Hong
(2004).

The models considered in this paper are very general. For
example, we allow heteroskedasticity and threshold effects
in both mean and variance, error distributions with general
parametric forms, and general loss functions. Independent work
by Chan and Kutoyants (2010) considers a problem similar to this
paper in threshold autoregressive models under very restrictive
specifications; e.g., the error term is i.i.d. normal, the slope
parameters are known, and only the mean square error loss is
considered. They use a simulation method to find critical values
for the confidence intervals (CIs) of the threshold point, which is,
as argued in Section 3.4, not practical in reality. Instead, we suggest
to use the posterior interval as the CI for the threshold point. Most
importantly, they give little details on the efficiency problem.

This paper is organized as follows. Section 2 illustrates the
main idea of this paper using a simple threshold regression model.
Section 3 presents the main result of this paper, in which the
asymptotic distributions of the MLE and BE are derived, and the
BE is proved to be most efficient among all estimators. Also,
the posterior interval is proven to be an asymptotically valid
confidence interval. Section 4 shows some simulation results,
and Section 5 concludes. All assumptions, proofs, lemmas and
algorithms are given in Appendices A–D, respectively.

Before closing this introduction, it should be pointed out that
the framework of this paper is essentially frequentist in the
sense that while Bayes procedures are used, the randomness
is confined to the data and does not include parameters.
Correspondingly, we do not intend to propose a new Bayesian
simulation method; such methods can be found in Geweke
and Terui (1993). A word on notation: the letter C is used
as a generic positive constant, which need not be the same
in each occurrence. ℓ is always used for indicating the two
regimes in (1), so is not written out explicitly as ‘‘ℓ = 1, 2’’
throughout the paper. The code for simulations is available at
http://homes.eco.auckland.ac.nz/pyu013/research.html.

2. No error term: an illustration

In this section, a simple threshold regression model is used
to illustrate the main result of this paper: the threshold point is
essentially a ‘‘middle’’ boundary. In the following discussion, q(m)
denotes the mth order statistic of a sequence of random variables
{qi}ni=1.

Suppose the population model is

y = 1(q ≤ γ ), q ∼ U[0, 1], (2)

where U[0, 1] is the uniform distribution on [0, 1], 1(·) is the
indicator function, γ is the parameter of interest, and γ0 = 1/2.2
This is equivalent to x = 1, β10 = 1, β20 = 0, and σ10 = σ20 = 0
in the general setup (1). There is no error term e in (2), so the
observed y value can only be 0 or 1. Such a simple model can be
viewed as a treatment rule in social program evaluation. If q is
interpreted as the percentiles of income, then people below the
median income are enrolled in the program with y taking value
1. Otherwise, people are not enrolled with y taking value 0. Such
a treatment rule is too simple in reality, as the propensity score is
a step function dropping from 1 (q below γ0) to 0 (q above γ0).3
Here, the task is to find the step treatment rule, given the income
of people and whether they are enrolled in the program.

For this simple model, the likelihood function is

p (Wn|γ ) =

n
i=1


1 (qi ≤ γ )1(yi=1)

· 1 (qi > γ )1(yi=0) , (3)

where Wn = (w1, . . . , wn) with wi ≡ (yi, qi) is the dataset, and
00 is defined to be 1. A simple calculation shows that the MLE is
[q(m), q(m+1)), where m is the number of yi’s with value 1. When
there is an interval maximizing this likelihood function, following
the literature, the left endpoint (i.e., q(m)) is taken as the estimator.4
Such an estimator is called the left-endpoint MLE (LMLE), and is
denoted asγLMLE.

First, γLMLE is n consistent. Notice that γLMLE is the qi that
is closest to 1/2 from the left. Since {qi}ni=1 are sampled from
U[0, 1], n data points of q are randomly put into an interval with
length 1, and thus the average distance between contiguous qi’s is
around 1/n. 1/2 is in the interval [q(m), q(m+1)), so n(γLMLE − 1/2)
is expected to be Op(1). Second,

n(γLMLE − 1/2)
d

−→ −Exp(1), (4)

where Exp(1) is a standard exponential distribution. SinceγLMLE is
smaller than 1/2, for any t ≤ 0,

P (n(γLMLE − 1/2) ≤ t) = P

qi ∉


1/2 +

t
n
, 1/2


for all i


=


1 +

t
n

n

→ et .

To further appreciate (4), suppose we want to estimate γ in
the distribution of yq. yq picks out the q’s such that y = 1. Its
distribution is a point mass at 0 plus a uniform distribution on
(0, γ ]. Since γ is the right endpoint of this distribution, it is well
known that the MLE is the maximum of the data and follows the
exponential distribution asymptotically. Similarly,γ canbe treated
as the left boundary of (1 − y) q and estimated by the minimum
of the nonzero (1 − yi) qi. In short, γ can be viewed as a boundary
(of both yq and (1 − y) q) although it is in themiddle of q’s support.

2 I would like to thank Jack Porter for providing this example. I also want to thank
an associate editor and a referee for improving its exposition.
3 Such a treatment rule is called the sharp design, as opposed to the fuzzy design

where the treatment is not deterministic in the two regimes, by Trochim (1984)
in the regression discontinuity design (RDD) literature; see Bajari et al. (2010) for
a similar analysis as below when using RDD to study contracting in health care.
Usually, γ0 is set by the policy-maker, and is publicly known.
4 Most of the literature uses the left endpoint instead of the middle point. A

possible reason is that these two estimators are thought to bear similar properties.
For example, the sample splitting based on either point is the same; themaximizing
interval shrinks at rate 1/n as shown in the following paragraph, so both methods
generate almost the same point estimate in practice. The only exception to use
the middle point, to my knowledge, is Gijbels et al. (1999) in the nonparametric
environment, but they do not provide any theoretical justification.
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